Skip to content

Brain & Nervous System Health Center

High-Frequency Noise Boosts Math Skills in Study

But the treatment isn't ready for prime time yet, expert says
Font Size
A
A
A

WebMD News from HealthDay

By Randy Dotinga

HealthDay Reporter

THURSDAY, May 16 (HealthDay News) -- Could you someday zap your way to a smarter brain? Preliminary new research suggests that it's a possibility: Scientists report that they were able to improve the math-calculation skills of college students by buzzing their brains with doses of random high-frequency noise.

But don't go searching for a brain zapper at Walmart just yet. It's not clear why "transcranial random noise stimulation" might boost thinking skills, and the necessary equipment isn't sitting on the shelves at your local hardware store. The treatment is considered to be harmless but has only been studied for a few years, and the study findings aren't definitive.

For now, though, the results of the new study are promising, said author Roi Cohen Kadosh, a cognitive neuroscientist at the University of Oxford, in England. "We can enhance one of the most complicated high-level cognitive [mental] functions and improve brain response after just five days of training, with a long-lasting effect six months later."

Scientists have only been studying transcranial random noise stimulation for about five years, Cohen Kadosh said. Researchers use the technique to stimulate the brain's cortex by putting electrodes on the scalp and delivering random bits of electrical noise. "It is non-invasive, painless -- the level of current is generated by home batteries, and is very low -- and relatively cheap," he said.

Transcranial random noise stimulation is considered to be harmless, and several studies haven't mentioned any adverse effects in those who have been zapped. Researchers are interested in one possible positive effect, though: changes in how the brain processes things.

"The brain is working on electricity, and in some cases poor behavior and cognitive [thinking] abilities appear when there's less activation of regions that are otherwise active," Cohen Kadosh said. "We thought that if we can make it easier for neurons to fire, it will allow an improved performance."

In the study, appearing May 16 in the journal Current Biology, researchers recruited 51 Oxford students and gave them five days of training and testing as they performed arithmetic tasks. The tasks tested their ability to remember math facts (like 4 x 8 = 32) and make calculations (like 32 - 17 + 5 = 20), Cohen Kadosh said.

Today on WebMD

nerve damage
Learn how this disease affects the nervous system.
senior woman with lost expression
Know the early warning signs.
 
Close up of eye
12 culprits that affect your ability to focus.
medical marijuana plant
What is it used for?
 
senior man
Article
brain research briefing
Article
 
Syringe
Article
Vaccine and needle
VIDEO
 
mans hands on laptop keyboard
Article
brain illustration stroke
Slideshow
 
most common stroke symptoms
Article
Parkinsons Disease Medications
Article