Skip to content

    Cancer Health Center

    Font Size
    A
    A
    A

    Genetics of Colorectal Cancer (PDQ®): Genetics - Health Professional Information [NCI] - Colon Cancer Genes

    Table 2. Genes Associated with a High Susceptibility of Colorectal Cancer continued...

    Polymorphisms underlying polygenic susceptibility to CRC are considered low penetrance, a term often applied to sequence variants associated with a minimal to moderate risk. This is in contrast to high-penetrance variants or alleles that are typically associated with more severe phenotypes, for example those APC or MMR gene mutations leading to an autosomal dominant inheritance pattern in a family. The definition of a moderate risk of cancer is arbitrary, but it is usually considered to be in the range of an RR of 1.5 to 2.0. Because these types of sequence variants are relatively common in the population, their contribution to total cancer risk is estimated to be much higher than the attributable risk in the population from the relatively rare syndromes such as FAP or LS. Additionally, polymorphisms in genes distinct from the MMR genes can modify phenotype (e.g., average age of CRC) in individuals with LS.

    In general, low-penetrance variants have been identified in one of two manners. Earlier studies focused on candidates genes chosen because of biologic relevance to colon cancer pathogenesis. More recently, genome-wide association studies (GWAS) have been used much more extensively to identify potential CRC susceptibility genes. (Refer to the Genome-wide searches section of this summary for more information.)

    Polymorphism-modifying risk in average-risk populations

    Low-penetrance candidate genes

    Several candidate genes have been identified and their potential use for clinical genetic testing is being determined. Candidate alleles that have been shown to associate with modest increased frequencies of colon cancer include heterozygous BLMAsh (the allele that is a founder mutation in Ashkenazi Jewish individuals with Bloom syndrome), the GH1 1663 T→A polymorphism (a polymorphism of the growth hormone gene associated with low levels of growth hormone and IGF-1), and the APC I1307K polymorphism.[15,16,17]

    Of these, the variant that has been most extensively studied is APC I1307K. Yet, neither it nor any of the other variants mentioned above are routinely used in clinical practice. (Refer to the APC I1307K section of this summary for more information.)

    Genome-wide searches

    Although the major genes for polyposis and nonpolyposis inherited CRC syndromes have been identified, between 20% and 50% of cases from any given series of suspected FAP or LS cases fail to have a mutation detected by currently available technologies. It is estimated that heredity is responsible for approximately one-third of the susceptibility to CRC,[18] and causative germline mutations account for less than 6% of all CRC cases.[19] This has led to suspicions that there may be other major genes that, when mutated, predispose to CRC with or without polyposis. A few such genes have been detected (e.g., MYH, EPCAM) but the probability for discovery of other such genes is fairly low. More recent measures for new gene discovery have taken a genome-wide approach. Several GWAS have been conducted with relatively large, unselected series of CRC patients that have been evaluated for patterns of polymorphisms in candidate and anonymous genes spread throughout the genome. These SNPs are chosen to capture a large portion of common variation within the genome, based on the International HapMap Project.[20,21] The goal is to identify alleles that, while not pathologically mutated, may confer an increase (or potential decrease) in CRC risk. Identification of yet unknown aberrant CRC alleles would permit further stratification of at-risk individuals on a genetic basis. Such risk stratification would potentially enhance CRC screening. The use of genome-wide scans has led to the discovery of multiple common low-risk CRC susceptibility alleles. (Refer to Table 3 for more information.)

    1 | 2 | 3 | 4 | 5 | 6 | 7 | 8
    1 | 2 | 3 | 4 | 5 | 6 | 7 | 8
    Next Article:

    Today on WebMD

    Colorectal cancer cells
    New! I AM Not Cancer Facebook Group
    Lung cancer xray
    See it in pictures, plus read the facts.
     
    sauteed cherry tomatoes
    Fight cancer one plate at a time.
    Ovarian cancer illustration
    Real Cancer Perspectives
     
    Jennifer Goodman Linn self-portrait
    Blog
    what is your cancer risk
    HEALTH CHECK
     
    colorectal cancer treatment advances
    Video
    breast cancer overview slideshow
    SLIDESHOW
     
    prostate cancer overview
    SLIDESHOW
    lung cancer overview slideshow
    SLIDESHOW
     
    ovarian cancer overview slideshow
    SLIDESHOW
    Actor Michael Douglas
    Article