Skip to content

Cancer Health Center

Font Size

Genetics of Colorectal Cancer (PDQ®): Genetics - Health Professional Information [NCI] - Major Genetic Syndromes

Table 5. Extracolonic Tumor Risks in Familial Adenomatous Polyposis continued...

The early appearance of clinical features of FAP and the subsequent recommendations for surveillance beginning at puberty raise special considerations relating to the genetic testing of children for susceptibility genes.[24] Some proponents feel that the genetic testing of children for FAP presents an example in which possible medical benefit justifies genetic testing of minors, especially for the anticipated 50% of children who will be found not to be mutation carriers and who can thus be spared the necessity of unpleasant and costly annual sigmoidoscopy. The psychological impact of such testing is currently under investigation and is addressed in the Psychosocial Issues in Hereditary Colon Cancer Syndromes section of this summary.

A number of different APC mutations have been described in a series of FAP patients. The clinical features of FAP appear to be generally associated with the location of the mutation in the APC gene and the type of mutation (i.e., frameshift mutation vs. missense mutation). Two features of particular clinical interest that are apparently associated with APC mutations are (1) the density of colonic polyposis and (2) the development of extracolonic tumors.

Adenomatous Polyposis Coli (APC)

The APC gene on chromosome 5q21 encodes a 2,843-amino acid protein that is important in cell adhesion and signal transduction; beta-catenin is its major downstream target. APC is a tumor suppressor gene, and the loss of APC is among the earliest events in the chromosomal instability colorectal tumor pathway. The important role of APC in predisposition to colorectal tumors is supported by the association of APC germline mutations with FAP and attenuated FAP (AFAP). Both conditions can be diagnosed genetically by testing for germline mutations in the APC gene in DNA from peripheral blood leukocytes. Most FAP pedigrees have APC alterations that produce truncating mutations, primarily in the first half of the gene.[25,26] AFAP is associated with truncating mutations primarily in the 5' and 3' ends of the gene and possibly missense mutations elsewhere.[27,28,29,30]

More than 300 different disease-associated mutations of the APC gene have been reported.[26] The vast majority of these changes are insertions, deletions, and nonsense mutations that lead to frameshifts and/or premature stop codons in the resulting transcript of the gene. The most common APC mutation (10% of FAP patients) is a deletion of AAAAG in codon 1309; no other mutations appear to predominate. Mutations that reduce rather than eliminate production of the APC protein may also lead to FAP.[31]

1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|32|33|34|35|36|37|38|39|40|41|42|43|44|45|46|47|48|49|50|51|52|53|54|55|56|57|58|59|60|61|62|63|64
Next Article:

Today on WebMD

Colorectal cancer cells
A common one in both men and women.
Lung cancer xray
See it in pictures, plus read the facts.
 
sauteed cherry tomatoes
Fight cancer one plate at a time.
Ovarian cancer illustration
Do you know the symptoms?
 
Jennifer Goodman Linn self-portrait
Blog
what is your cancer risk
HEALTH CHECK
 
colorectal cancer treatment advances
Video
breast cancer overview slideshow
SLIDESHOW
 
prostate cancer overview
SLIDESHOW
lung cancer overview slideshow
SLIDESHOW
 
ovarian cancer overview slideshow
SLIDESHOW
Actor Michael Douglas
Article