Skip to content
My WebMD Sign In, Sign Up

Cancer Health Center

Font Size

Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies Treatment (PDQ®): Treatment - Health Professional Information [NCI] - Classification of Pediatric Myeloid Malignancies

Table 2. Acute Leukemias of Ambiguous Lineage According to the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissuesa continued...

Leukemias of mixed phenotype comprise two groups of patients: (1) bilineal leukemias in which there are two distinct population of cells, usually one lymphoid and one myeloid, and (2) biphenotypic leukemias where individual blast cells display features of both lymphoid and myeloid lineage. Biphenotypic cases represent the majority of mixed phenotype leukemias.[18] B-myeloid biphenotypic leukemias lacking the TEL-AML1 fusion have a lower rate of complete remission and a significantly worse event-free survival (EFS) compared with patients with B-precursor ALL.[18] Some studies suggest that patients with biphenotypic leukemia may fare better with a lymphoid, as opposed to a myeloid, treatment regimen,[19,20,25] although the optimal treatment for patients remains unclear.

Cytogenetic Evaluation and Molecular Abnormalities

Chromosomal analyses of leukemia should be performed on children with AML because chromosomal abnormalities are important diagnostic and prognostic markers.[26,27,28,29,30,31] Clonal chromosomal abnormalities have been identified in the blasts of about 75% of children with AML and are useful in defining subtypes with particular characteristics (e.g., t(8;21) with M2, t(15;17) with M3, inv(16) with M4Eo, 11q23 abnormalities with M4 and M5, t(1;22) with M7). Leukemias with the chromosomal abnormalities t(8;21) and inv(16) are called core-binding factor leukemias; core-binding factor (a transcription factor involved in hematopoietic stem cell differentiation) is disrupted by each of these abnormalities.

Molecular probes and newer cytogenetic techniques (e.g., fluorescence in situ hybridization [FISH]) can detect cryptic abnormalities that were not evident by standard cytogenetic banding studies.[32] This is clinically important when optimal therapy differs, as in APL. Use of these techniques can identify cases of APL when the diagnosis is suspected but the t(15;17) is not identified by routine cytogenetic evaluation. The presence of the Philadelphia (Ph) chromosome in patients with AML most likely represents chronic myelogenous leukemia (CML) that has transformed to AML rather than de novo AML. Molecular methods are also being used to identify recurring gene mutations in adults and children with AML, and as described below, some of these recurring mutations have prognostic significance.

A unifying concept for the role of specific mutations in AML is that mutations that promote proliferation (Type I) and mutations that block normal myeloid development (Type II) are required for full conversion of hematopoietic stem/precursor cells to malignancy.[33,34] Support for this conceptual construct comes from the observation that there is generally mutual exclusivity within each type of mutation, such that a single Type I and a single Type II mutation are present within each case. Further support comes from genetically engineered models of AML for which cooperative events rather than single mutations are required for leukemia development. Type I mutations are commonly in genes involved in growth factor signal transduction and include mutations in FLT3, KIT, NRAS, KRAS, and PTNP11.[35] Type II genomic alterations include the common translocations and mutations associated with favorable prognosis (t(8;21), inv(16), t(16;16), t(15;17), CEBPA, and NPM1). MLL rearrangements (translocations and partial tandem duplication) are also classified as Type II mutations.

1|2|3|4|5|6|7|8|9|10

WebMD Public Information from the National Cancer Institute

Last Updated: February 25, 2014
This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.
Next Article:

Today on WebMD

Building a Support System
Blog
cancer fighting foods
SLIDESHOW
 
precancerous lesions slideshow
SLIDESHOW
quit smoking tips
SLIDESHOW
 
Jennifer Goodman Linn self-portrait
Blog
what is your cancer risk
HEALTH CHECK
 
colorectal cancer treatment advances
Video
breast cancer overview slideshow
SLIDESHOW
 
prostate cancer overview
SLIDESHOW
lung cancer overview slideshow
SLIDESHOW
 
ovarian cancer overview slideshow
SLIDESHOW
Actor Michael Douglas
Article