Skip to content
My WebMD Sign In, Sign Up

Cancer Health Center

Font Size

Treatment of Newly Diagnosed Acute Myeloid Leukemia


Central Nervous System (CNS) Prophylaxis for Acute Myeloid Leukemia (AML)

Although the presence of CNS leukemia at diagnosis (i.e., clinical neurologic features and/or leukemic cells in cerebral spinal fluid on cytocentrifuge preparation) is more common in childhood AML than in childhood acute lymphoblastic leukemia (ALL), survival is not adversely affected.[18] This finding is perhaps related to both the higher doses of chemotherapy used in AML (with potential crossover to the CNS) and the fact that marrow disease has not yet been as effectively brought under long-term control in AML as in ALL. Children with M4 and M5 AML have the highest incidence of CNS leukemia (especially those with inv[16] or 11q23 chromosomal abnormalities). The use of some form of CNS-directed treatment (intrathecal chemotherapy with or without cranial irradiation) is now incorporated into most protocols for the treatment of childhood AML and is considered a standard part of the treatment for AML.[19]

Granulocytic Sarcoma (GS)/Chloroma

GS (chloroma), describes extramedullary collections of leukemia cells. These collections can occur, albeit rarely, as the sole evidence of leukemia. In a review of three AML studies conducted by the former CCG, fewer than 1% of patients had isolated GS, and 11% had GS along with marrow disease at the time of diagnosis.[20] Importantly, the patient who presents with an isolated tumor, without evidence of marrow involvement, must be treated as if there is systemic disease. Patients with isolated GS have a good prognosis if treated with current AML therapy. For those patients who have GS in addition to marrow involvement, the patients with disease limited to the skin do worse than those without GS; those with AML that involves sites other than skin (e.g., orbit, head, and neck), have a similar prognosis to patients with bone marrow leukemia alone. Many of these patients have t(8;21) with orbital myeloblastomas. The use of radiation therapy does not improve survival in patients with GS who have a complete response to chemotherapy, but may be necessary if the site(s) of GS do not show complete response to chemotherapy, or for disease that reoccurs locally.[20]

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with untreated childhood acute myeloid leukemia and other myeloid malignancies. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.


  1. Ries LAG, Melbert D, Krapcho M, et al.: SEER Cancer Statistics Review, 1975-2005. Bethesda, Md: National Cancer Institute, 2007. Also available online. Last accessed June 23, 2011.
  2. Gibson BE, Wheatley K, Hann IM, et al.: Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia 19 (12): 2130-8, 2005.
  3. Lange BJ, Smith FO, Feusner J, et al.: Outcomes in CCG-2961, a children's oncology group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the children's oncology group. Blood 111 (3): 1044-53, 2008.
  4. Creutzig U, B�chner T, Sauerland MC, et al.: Significance of age in acute myeloid leukemia patients younger than 30 years: a common analysis of the pediatric trials AML-BFM 93/98 and the adult trials AMLCG 92/99 and AMLSG HD93/98A. Cancer 112 (3): 562-71, 2008.
  5. Stevens RF, Hann IM, Wheatley K, et al.: Marked improvements in outcome with chemotherapy alone in paediatric acute myeloid leukemia: results of the United Kingdom Medical Research Council's 10th AML trial. MRC Childhood Leukaemia Working Party. Br J Haematol 101 (1): 130-40, 1998.
  6. Creutzig U, Ritter J, Zimmermann M, et al.: Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of Study Acute Myeloid Leukemia-Berlin-Frankfurt-M�nster 93. J Clin Oncol 19 (10): 2705-13, 2001.
  7. Lange BJ, Dinndorf P, Smith FO, et al.: Pilot study of idarubicin-based intensive-timing induction therapy for children with previously untreated acute myeloid leukemia: Children's Cancer Group Study 2941. J Clin Oncol 22 (1): 150-6, 2004.
  8. Creutzig U, Ritter J, Zimmermann M, et al.: Idarubicin improves blast cell clearance during induction therapy in children with AML: results of study AML-BFM 93. AML-BFM Study Group. Leukemia 15 (3): 348-54, 2001.
  9. Creutzig U, Zimmermann M, Reinhardt D, et al.: Early deaths and treatment-related mortality in children undergoing therapy for acute myeloid leukemia: analysis of the multicenter clinical trials AML-BFM 93 and AML-BFM 98. J Clin Oncol 22 (21): 4384-93, 2004.
  10. Hann IM, Stevens RF, Goldstone AH, et al.: Randomized comparison of DAT versus ADE as induction chemotherapy in children and younger adults with acute myeloid leukemia. Results of the Medical Research Council's 10th AML trial (MRC AML10). Adult and Childhood Leukaemia Working Parties of the Medical Research Council. Blood 89 (7): 2311-8, 1997.
  11. Burnett AK, Hills RK, Milligan DW, et al.: Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: results of the MRC AML12 trial. J Clin Oncol 28 (4): 586-95, 2010.
  12. Weick JK, Kopecky KJ, Appelbaum FR, et al.: A randomized investigation of high-dose versus standard-dose cytosine arabinoside with daunorubicin in patients with previously untreated acute myeloid leukemia: a Southwest Oncology Group study. Blood 88 (8): 2841-51, 1996.
  13. Bishop JF, Matthews JP, Young GA, et al.: A randomized study of high-dose cytarabine in induction in acute myeloid leukemia. Blood 87 (5): 1710-7, 1996.
  14. Becton D, Ravindranath Y, Dahl GV, et al.: A phase III study of intensive cytarabine (Ara-C) induction followed by cyclosporine (CSA) modulation of drug resistance in de novo pediatric AML; POG 9421. [Abstract] Blood 98 (11 Pt 1): A-1929, 461a, 2001.
  15. Ozer H, Armitage JO, Bennett CL, et al.: 2000 update of recommendations for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines. American Society of Clinical Oncology Growth Factors Expert Panel. J Clin Oncol 18 (20): 3558-85, 2000.
  16. Creutzig U, Zimmermann M, Lehrnbecher T, et al.: Less toxicity by optimizing chemotherapy, but not by addition of granulocyte colony-stimulating factor in children and adolescents with acute myeloid leukemia: results of AML-BFM 98. J Clin Oncol 24 (27): 4499-506, 2006.
  17. Lehrnbecher T, Zimmermann M, Reinhardt D, et al.: Prophylactic human granulocyte colony-stimulating factor after induction therapy in pediatric acute myeloid leukemia. Blood 109 (3): 936-43, 2007.
  18. Johnston DL, Alonzo TA, Gerbing RB, et al.: The presence of central nervous system disease at diagnosis in pediatric acute myeloid leukemia does not affect survival: a Children's Oncology Group study. Pediatr Blood Cancer 55 (3): 414-20, 2010.
  19. Pui CH, Dahl GV, Kalwinsky DK, et al.: Central nervous system leukemia in children with acute nonlymphoblastic leukemia. Blood 66 (5): 1062-7, 1985.
  20. Dusenbery KE, Howells WB, Arthur DC, et al.: Extramedullary leukemia in children with newly diagnosed acute myeloid leukemia: a report from the Children's Cancer Group. J Pediatr Hematol Oncol 25 (10): 760-8, 2003.

WebMD Public Information from the National Cancer Institute

Last Updated: May 16, 2012
This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.

Today on WebMD

Building a Support System
cancer fighting foods
precancerous lesions slideshow
quit smoking tips
Jennifer Goodman Linn self-portrait
what is your cancer risk
colorectal cancer treatment advances
breast cancer overview slideshow
prostate cancer overview
lung cancer overview slideshow
ovarian cancer overview slideshow
Actor Michael Douglas