Skip to content
My WebMD Sign In, Sign Up

Cancer Health Center

Font Size

Genetics of Colorectal Cancer (PDQ®): Genetics - Health Professional Information [NCI] - Genetic Polymorphisms and Colorectal Cancer Risk

Table 3. Colorectal Cancer Susceptibility Loci Identified Through Genome-Wide Association Studies continued...

Polymorphisms in Unrelated Genes Affecting Expression in LS

Polymorphisms potentially affecting expression in MMR genes fall into two categories: those whose mechanisms are already suspected to have an effect on cancer-related pathways, and those that are truly anonymous. Several candidate genes have been studied. Anonymous genes have also been evaluated.

Studies have demonstrated that a polymorphism in the promoter region of the insulin-like growth factor 1 (IGF1) gene modifies age of onset of CRC in LS.[25,26]. The polymorphism is a variable number of CA-dinucleotide repeats approximately 1 kb upstream of the transcription start site of IGF1. There is significant variability between individuals and populations with respect to repeat length. Carriers of shorter repeat lengths (shortest allele ≤17 repeats) develop CRC on average 12 years earlier than those with longer repeat lengths. It is unclear what influence this polymorphism may have on extracolonic malignancies. Additionally, the cyclin D1 polymorphism G870A may be associated with earlier age of onset of CRC in LS,[27,28] although the association appears to be more reproducible in MSH2 mutation carriers than in MLH1 mutation carriers.[28,29]

Two SNPs identified in GWAS have been reported to increase CRC risk in MMR gene mutation carriers. (Refer to the Genome-wide searches section of this summary for more information.) Having the C-allele of either SNP increased the risk of CRC in a dose-dependent fashion (with homozygotes at a higher risk than heterozygotes). The first SNP in 8q23.3 increased CRC risk 2.16-fold for homozygote carriers of the SNP. The second SNP, located in 11q23.1, increased CRC risk only in female SNP carriers by 3.08 for homozygotes and 1.49 for heterozygote SNP carriers.[30]

In a study of 684 mutation carriers from 298 Australian and Polish families, nine SNPs within six previous CRC susceptibility loci were genotyped to investigate their potential as modifiers of disease risk in LS.[31] Two SNPs, rs3802842 (11q23.1) and rs16892766 (8q23.3), were associated with CRC susceptibility in MLH1 mutation–positive LS patients. However, a subsequent study of 748 French MMR mutation carriers did not replicate the association between the IGF1 CA repeat and age of CRC onset or the association between SNPs in 8q23.3 and 11q23.1 and CRC risk.[32]

Given the inconsistent results of these studies, genetic testing for these polymorphisms has no clinical utility at present.

References:

  1. Burt RW, Bishop DT, Lynch HT, et al.: Risk and surveillance of individuals with heritable factors for colorectal cancer. WHO Collaborating Centre for the Prevention of Colorectal Cancer. Bull World Health Organ 68 (5): 655-65, 1990.
  2. Butterworth AS, Higgins JP, Pharoah P: Relative and absolute risk of colorectal cancer for individuals with a family history: a meta-analysis. Eur J Cancer 42 (2): 216-27, 2006.
  3. Johns LE, Houlston RS: A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol 96 (10): 2992-3003, 2001.
  4. Gruber SB, Ellis NA, Scott KK, et al.: BLM heterozygosity and the risk of colorectal cancer. Science 297 (5589): 2013, 2002.
  5. Le Marchand L, Donlon T, Seifried A, et al.: Association of a common polymorphism in the human GH1 gene with colorectal neoplasia. J Natl Cancer Inst 94 (6): 454-60, 2002.
  6. Laken SJ, Petersen GM, Gruber SB, et al.: Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet 17 (1): 79-83, 1997.
  7. Lichtenstein P, Holm NV, Verkasalo PK, et al.: Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343 (2): 78-85, 2000.
  8. Aaltonen L, Johns L, Järvinen H, et al.: Explaining the familial colorectal cancer risk associated with mismatch repair (MMR)-deficient and MMR-stable tumors. Clin Cancer Res 13 (1): 356-61, 2007.
  9. The International HapMap Consortium.: The International HapMap Project. Nature 426 (6968): 789-96, 2003.
  10. Thorisson GA, Smith AV, Krishnan L, et al.: The International HapMap Project Web site. Genome Res 15 (11): 1592-3, 2005.
  11. Tomlinson IP, Webb E, Carvajal-Carmona L, et al.: A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet 40 (5): 623-30, 2008.
  12. Tenesa A, Farrington SM, Prendergast JG, et al.: Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 40 (5): 631-7, 2008.
  13. Houlston RS, Webb E, Broderick P, et al.: Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet 40 (12): 1426-35, 2008.
  14. Picelli S, Vandrovcova J, Jones S, et al.: Genome-wide linkage scan for colorectal cancer susceptibility genes supports linkage to chromosome 3q. BMC Cancer 8: 87, 2008.
  15. Daley D, Lewis S, Platzer P, et al.: Identification of susceptibility genes for cancer in a genome-wide scan: results from the colon neoplasia sibling study. Am J Hum Genet 82 (3): 723-36, 2008.
  16. Neklason DW, Kerber RA, Nilson DB, et al.: Common familial colorectal cancer linked to chromosome 7q31: a genome-wide analysis. Cancer Res 68 (21): 8993-7, 2008.
  17. Zanke BW, Greenwood CM, Rangrej J, et al.: Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 39 (8): 989-94, 2007.
  18. Tomlinson I, Webb E, Carvajal-Carmona L, et al.: A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39 (8): 984-8, 2007.
  19. Gruber SB, Moreno V, Rozek LS, et al.: Genetic variation in 8q24 associated with risk of colorectal cancer. Cancer Biol Ther 6 (7): 1143-7, 2007.
  20. Broderick P, Carvajal-Carmona L, Pittman AM, et al.: A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet 39 (11): 1315-7, 2007.
  21. Hirschhorn JN, Lohmueller K, Byrne E, et al.: A comprehensive review of genetic association studies. Genet Med 4 (2): 45-61, 2002 Mar-Apr.
  22. Zheng SL, Sun J, Wiklund F, et al.: Cumulative association of five genetic variants with prostate cancer. N Engl J Med 358 (9): 910-9, 2008.
  23. Slattery ML, Herrick J, Curtin K, et al.: Increased risk of colon cancer associated with a genetic polymorphism of SMAD7. Cancer Res 70 (4): 1479-85, 2010.
  24. Lothe RA, Hektoen M, Johnsen H, et al.: The APC gene I1307K variant is rare in Norwegian patients with familial and sporadic colorectal or breast cancer. Cancer Res 58 (14): 2923-4, 1998.
  25. Reeves SG, Rich D, Meldrum CJ, et al.: IGF1 is a modifier of disease risk in hereditary non-polyposis colorectal cancer. Int J Cancer 123 (6): 1339-43, 2008.
  26. Zecevic M, Amos CI, Gu X, et al.: IGF1 gene polymorphism and risk for hereditary nonpolyposis colorectal cancer. J Natl Cancer Inst 98 (2): 139-43, 2006.
  27. Kong S, Amos CI, Luthra R, et al.: Effects of cyclin D1 polymorphism on age of onset of hereditary nonpolyposis colorectal cancer. Cancer Res 60 (2): 249-52, 2000.
  28. Talseth BA, Ashton KA, Meldrum C, et al.: Aurora-A and Cyclin D1 polymorphisms and the age of onset of colorectal cancer in hereditary nonpolyposis colorectal cancer. Int J Cancer 122 (6): 1273-7, 2008.
  29. Bala S, Peltomäki P: CYCLIN D1 as a genetic modifier in hereditary nonpolyposis colorectal cancer. Cancer Res 61 (16): 6042-5, 2001.
  30. Wijnen JT, Brohet RM, van Eijk R, et al.: Chromosome 8q23.3 and 11q23.1 variants modify colorectal cancer risk in Lynch syndrome. Gastroenterology 136 (1): 131-7, 2009.
  31. Talseth-Palmer BA, Brenne IS, Ashton KA, et al.: Colorectal cancer susceptibility loci on chromosome 8q23.3 and 11q23.1 as modifiers for disease expression in Lynch syndrome. J Med Genet 48 (4): 279-84, 2011.
  32. Houlle S, Charbonnier F, Houivet E, et al.: Evaluation of Lynch syndrome modifier genes in 748 MMR mutation carriers. Eur J Hum Genet 19 (8): 887-92, 2011.
1|2|3|4|5|6
1|2|3|4|5|6

WebMD Public Information from the National Cancer Institute

Last Updated: February 25, 2014
This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.
Next Article:

Today on WebMD

Building a Support System
Blog
cancer fighting foods
SLIDESHOW
 
precancerous lesions slideshow
SLIDESHOW
quit smoking tips
SLIDESHOW
 
Jennifer Goodman Linn self-portrait
Blog
what is your cancer risk
HEALTH CHECK
 
colorectal cancer treatment advances
Video
breast cancer overview slideshow
SLIDESHOW
 
prostate cancer overview
SLIDESHOW
lung cancer overview slideshow
SLIDESHOW
 
ovarian cancer overview slideshow
SLIDESHOW
Actor Michael Douglas
Article