Skip to content
My WebMD Sign In, Sign Up

Cancer Health Center

Font Size

Late Effects of the Neuroendocrine System



Hyperprolactinemia has been described in patients who have received doses of radiation higher than 50 Gy to the hypothalamus or who have undergone surgery disrupting the integrity of the pituitary stalk. Hyperprolactinemia may result in delayed puberty. In adult women, hyperprolactinemia may cause galactorrhea, menstrual irregularities, loss of libido, hot flashes, infertility, and osteopenia; in adult men, impotence and loss of libido. Primary hypothyroidism may lead to hyperprolactinemia as a result of hyperplasia of thyrotrophs and lactotrophs, presumably due to TRH hypersecretion. The prolactin response to TRH is usually exaggerated in these patients.[2,4,32]

Table 11. Neuroendocrine Late Effects

BMI = body mass index; FSH = follicle-stimulating hormone; LH = luteinizing hormone.
Predisposing Therapy Endocrine/Metabolic Effects Health Screening
Radiation impacting hypothalamic-pituitary axis Growth hormone deficiencyAssessment of nutritional status
Height, weight, BMI, Tanner stage
Radiation impacting hypothalamic-pituitary axis Precocious puberty Height, weight, BMI, Tanner stage
Radiation impacting hypothalamic-pituitary axis Gonadotropin deficiencyHistory: puberty, sexual function
Exam: Tanner stage
FSH, LH, estradiol or testosterone levels
Radiation impacting hypothalamic-pituitary axis Central adrenal insufficiencyHistory: failure to thrive, anorexia, episodic dehydration, hypoglycemia, lethargy, unexplained hypotension
Endocrine consultation for those with radiation dose ?30 Gy
Radiation impacting hypothalamic-pituitary axis Hyperprolactinemia History/exam: galactorrhea
Prolactin level
Radiation impacting hypothalamic-pituitary axis Overweight/obesity; metabolic syndromeHeight, weight, BMI
Blood pressure
Fasting blood glucose level and lipid profile
Radiation impacting hypothalamic-pituitary axis Central hypothyroidismFree thyroxine (Free T4) level

Refer to the Children's Oncology Group Long-Term Follow-Up Guidelines for Survivors of Childhood, Adolescent, and Young Adult Cancers for neuroendocrine system late effects information including risk factors, evaluation, and health counseling.


  1. Gurney JG, Kadan-Lottick NS, Packer RJ, et al.: Endocrine and cardiovascular late effects among adult survivors of childhood brain tumors: Childhood Cancer Survivor Study. Cancer 97 (3): 663-73, 2003.
  2. Constine LS, Woolf PD, Cann D, et al.: Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med 328 (2): 87-94, 1993.
  3. Sklar CA: Growth and neuroendocrine dysfunction following therapy for childhood cancer. Pediatr Clin North Am 44 (2): 489-503, 1997.
  4. Darzy KH, Shalet SM: Hypopituitarism following radiotherapy. Pituitary 12 (1): 40-50, 2009.
  5. Mulder RL, Kremer LC, van Santen HM, et al.: Prevalence and risk factors of radiation-induced growth hormone deficiency in childhood cancer survivors: a systematic review. Cancer Treat Rev 35 (7): 616-32, 2009.
  6. Merchant TE, Goloubeva O, Pritchard DL, et al.: Radiation dose-volume effects on growth hormone secretion. Int J Radiat Oncol Biol Phys 52 (5): 1264-70, 2002.
  7. Sklar C, Mertens A, Walter A, et al.: Final height after treatment for childhood acute lymphoblastic leukemia: comparison of no cranial irradiation with 1800 and 2400 centigrays of cranial irradiation. J Pediatr 123 (1): 59-64, 1993.
  8. Schriock EA, Schell MJ, Carter M, et al.: Abnormal growth patterns and adult short stature in 115 long-term survivors of childhood leukemia. J Clin Oncol 9 (3): 400-5, 1991.
  9. Chow EJ, Friedman DL, Yasui Y, et al.: Decreased adult height in survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Pediatr 150 (4): 370-5, 375.e1, 2007.
  10. Cheuk DK, Billups CA, Martin MG, et al.: Prognostic factors and long-term outcomes of childhood nasopharyngeal carcinoma. Cancer 117 (1): 197-206, 2011.
  11. Ogilvy-Stuart AL, Clark DJ, Wallace WH, et al.: Endocrine deficit after fractionated total body irradiation. Arch Dis Child 67 (9): 1107-10, 1992.
  12. Willi SM, Cooke K, Goldwein J, et al.: Growth in children after bone marrow transplantation for advanced neuroblastoma compared with growth after transplantation for leukemia or aplastic anemia. J Pediatr 120 (5): 726-32, 1992.
  13. Wingard JR, Plotnick LP, Freemer CS, et al.: Growth in children after bone marrow transplantation: busulfan plus cyclophosphamide versus cyclophosphamide plus total body irradiation. Blood 79 (4): 1068-73, 1992.
  14. Bernard F, Bordigoni P, Simeoni MC, et al.: Height growth during adolescence and final height after haematopoietic SCT for childhood acute leukaemia: the impact of a conditioning regimen with BU or TBI. Bone Marrow Transplant 43 (8): 637-42, 2009.
  15. Chemaitilly W, Sklar CA: Endocrine complications of hematopoietic stem cell transplantation. Endocrinol Metab Clin North Am 36 (4): 983-98; ix, 2007.
  16. Huma Z, Boulad F, Black P, et al.: Growth in children after bone marrow transplantation for acute leukemia. Blood 86 (2): 819-24, 1995.
  17. Soci� G, Salooja N, Cohen A, et al.: Nonmalignant late effects after allogeneic stem cell transplantation. Blood 101 (9): 3373-85, 2003.
  18. Cohen A, Rovelli A, Bakker B, et al.: Final height of patients who underwent bone marrow transplantation for hematological disorders during childhood: a study by the Working Party for Late Effects-EBMT. Blood 93 (12): 4109-15, 1999.
  19. Sklar CA, Mertens AC, Mitby P, et al.: Risk of disease recurrence and second neoplasms in survivors of childhood cancer treated with growth hormone: a report from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab 87 (7): 3136-41, 2002.
  20. Ergun-Longmire B, Mertens AC, Mitby P, et al.: Growth hormone treatment and risk of second neoplasms in the childhood cancer survivor. J Clin Endocrinol Metab 91 (9): 3494-8, 2006.
  21. Bogarin R, Steinbok P: Growth hormone treatment and risk of recurrence or progression of brain tumors in children: a review. Childs Nerv Syst 25 (3): 273-9, 2009.
  22. Nandagopal R, Laverdi�re C, Mulrooney D, et al.: Endocrine late effects of childhood cancer therapy: a report from the Children's Oncology Group. Horm Res 69 (2): 65-74, 2008.
  23. Didcock E, Davies HA, Didi M, et al.: Pubertal growth in young adult survivors of childhood leukemia. J Clin Oncol 13 (10): 2503-7, 1995.
  24. Shalet SM, Crowne EC, Didi MA, et al.: Irradiation-induced growth failure. Baillieres Clin Endocrinol Metab 6 (3): 513-26, 1992.
  25. Rappaport R, Brauner R, Czernichow P, et al.: Effect of hypothalamic and pituitary irradiation on pubertal development in children with cranial tumors. J Clin Endocrinol Metab 54 (6): 1164-8, 1982.
  26. Chow EJ, Friedman DL, Yasui Y, et al.: Timing of menarche among survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer 50 (4): 854-8, 2008.
  27. Armstrong GT, Whitton JA, Gajjar A, et al.: Abnormal timing of menarche in survivors of central nervous system tumors: A report from the Childhood Cancer Survivor Study. Cancer 115 (11): 2562-70, 2009.
  28. Laughton SJ, Merchant TE, Sklar CA, et al.: Endocrine outcomes for children with embryonal brain tumors after risk-adapted craniospinal and conformal primary-site irradiation and high-dose chemotherapy with stem-cell rescue on the SJMB-96 trial. J Clin Oncol 26 (7): 1112-8, 2008.
  29. Rose SR: Cranial irradiation and central hypothyroidism. Trends Endocrinol Metab 12 (3): 97-104, 2001.
  30. Rose SR, Lustig RH, Pitukcheewanont P, et al.: Diagnosis of hidden central hypothyroidism in survivors of childhood cancer. J Clin Endocrinol Metab 84 (12): 4472-9, 1999.
  31. Paulino AC: Hypothyroidism in children with medulloblastoma: a comparison of 3600 and 2340 cGy craniospinal radiotherapy. Int J Radiat Oncol Biol Phys 53 (3): 543-7, 2002.
  32. Constine LS, Rubin P, Woolf PD, et al.: Hyperprolactinemia and hypothyroidism following cytotoxic therapy for central nervous system malignancies. J Clin Oncol 5 (11): 1841-51, 1987.
  33. Patterson BC, Truxillo L, Wasilewski-Masker K, et al.: Adrenal function testing in pediatric cancer survivors. Pediatr Blood Cancer 53 (7): 1302-7, 2009.
  34. Kazlauskaite R, Evans AT, Villabona CV, et al.: Corticotropin tests for hypothalamic-pituitary- adrenal insufficiency: a metaanalysis. J Clin Endocrinol Metab 93 (11): 4245-53, 2008.
  35. Rose SR, Danish RK, Kearney NS, et al.: ACTH deficiency in childhood cancer survivors. Pediatr Blood Cancer 45 (6): 808-13, 2005.

WebMD Public Information from the National Cancer Institute

Last Updated: May 16, 2012
This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.

Today on WebMD

Building a Support System
cancer fighting foods
precancerous lesions slideshow
quit smoking tips
Jennifer Goodman Linn self-portrait
what is your cancer risk
colorectal cancer treatment advances
breast cancer overview slideshow
prostate cancer overview
lung cancer overview slideshow
ovarian cancer overview slideshow
Actor Michael Douglas