Skip to content

Cancer Health Center

Font Size

Cancer Genetics Overview (PDQ®): Genetics - Health Professional Information [NCI] - Introduction

Many of the medical and scientific terms used in this summary are found in the NCI Dictionary of Genetics Terms. When a linked term is clicked, the definition will appear in a separate window.

The etiology of cancer is multifactorial, with genetic, environmental, medical, and lifestyle factors interacting to produce a given malignancy. Knowledge of cancer genetics is rapidly improving our understanding of cancer biology, helping to identify at-risk individuals, furthering the ability to characterize malignancies, establishing treatment tailored to the molecular fingerprint of the disease, and leading to the development of new therapeutic modalities. As a consequence, this expanding knowledge base has implications for all aspects of cancer management, including prevention, screening, and treatment.

Genetic information provides a means of identifying people who have an increased risk of cancer. Sources of genetic information include biologic samples of DNA, information derived from a person's family history of disease, findings from physical examinations, and medical records. DNA-based information can be gathered, stored, and analyzed at any time during an individual's life span, from before conception to after death. Family history may identify people with a modest to moderately increased risk of cancer or may serve as the first step in the identification of an inherited cancer predisposition that confers a very high lifetime risk of cancer. For an increasing number of diseases, DNA-based testing can be used to identify a specific mutation as the cause of inherited risk and to determine whether family members have inherited the disease-related mutation.

The proportion of individuals carrying a mutation who will manifest the disease is referred to as penetrance. In general, common genetic variants that are associated with cancer susceptibility have a lower penetrance than rare genetic variants. This is depicted in Figure 1. For adult-onset diseases, penetrance is usually described by the individual carrier's age and sex. For example, the penetrance for breast cancer in female BRCA1/BRCA2 mutation carriers is often quoted by age 50 years and by age 70 years. Of the numerous methods for estimating penetrance, none are without potential biases, and determining an individual mutation carrier's risk of cancer involves some level of imprecision.
cdr0000746226.jpg
Figure 1. Genetic architecture of cancer risk. This graph depicts the general finding of a low relative risk associated with common, low-penetrance genetic variants, such as single-nucleotide polymorphisms identified in genome-wide association studies, and a higher relative risk associated with rare, high-penetrance genetic variants, such as mutations in the BRCA1/ BRCA2 genes associated with hereditary breast and ovarian cancer and the mismatch repair genes associated with Lynch syndrome.

    1|2|3|4
    Next Article:

    Today on WebMD

    Colorectal cancer cells
    A common one in both men and women.
    Lung cancer xray
    See it in pictures, plus read the facts.
     
    sauteed cherry tomatoes
    Fight cancer one plate at a time.
    Ovarian cancer illustration
    Do you know the symptoms?
     
    Jennifer Goodman Linn self-portrait
    Blog
    what is your cancer risk
    HEALTH CHECK
     
    colorectal cancer treatment advances
    Video
    breast cancer overview slideshow
    SLIDESHOW
     
    prostate cancer overview
    SLIDESHOW
    lung cancer overview slideshow
    SLIDESHOW
     
    ovarian cancer overview slideshow
    SLIDESHOW
    Actor Michael Douglas
    Article