Skip to content

Cancer Health Center

Font Size

Pheochromocytoma and Paraganglioma Treatment (PDQ®): Treatment - Health Professional Information [NCI] - General Information About Pheochromocytoma and Paraganglioma

Table 1. Major Genetic Syndromes That Carry an Increased Risk of Pheochromocytoma continued...

Imaging studies

Computed tomography (CT) imaging or magnetic resonance imaging (MRI) of the abdomen and pelvis (at least through the level of the aortic bifurcation) are the most commonly used methods for localization.[29] Both have similar sensitivities (90%–100%) and specificities (70%–80%).[29] CT imaging provides superior anatomic detail compared with MRI.

Additional functional imaging may be necessary if CT imaging or MRI fails to localize the tumor. It might also be useful in patients who are at risk for multifocal, malignant, or recurrent disease. 123 I-metaiodobenzylguanidine (MIBG) scintigraphy coupled with CT imaging provides anatomic and functional information with good sensitivity (80%–90%) and specificity (95%–100%).[29]131 I-MIBG can be used in the same way, but the image quality is not as high as with 123 I-MIBG.[30] Other functional imaging alternatives include 111 In-octreotide scintigraphy and 18 F-fluorodeoxyglucose positron emission tomography, both of which can be coupled with CT imaging for improved anatomic detail.

It is rare for localization of a catecholamine-secreting tumor to be unsuccessful if currently available imaging methods are used.

Prognosis and Survival

There are no clear data regarding the survival of patients with localized (apparently benign) disease or regional disease. Although patients with localized (apparently benign) disease should experience an overall survival approaching that of age-matched disease-free individuals, 6.5% to 16.5% of these patients will develop a recurrence, usually 5 to 15 years after initial surgery.[31,32,33]

Approximately 50% of patients with recurrent disease experience distant metastasis.[33] The 5-year survival in the setting of metastatic disease (whether identified at the time of initial diagnosis or identified postoperatively as recurrent disease) is 40% to 45%.[34]

Follow-up Evaluation

Long-term follow-up is essential for all patients with pheochromocytoma or extra-adrenal paraganglioma, even when initial pathology demonstrates no findings that are concerning for malignancy.[6]

  • After resection of a solitary sporadic pheochromocytoma, patients should undergo baseline postoperative biochemical testing followed by annual lifelong biochemical testing.
  • Patients who have undergone resection of a noncatecholamine-producing tumor should initially undergo annual imaging with computed tomography imaging or magnetic resonance imaging and periodic imaging with radiolabeled metaiodobenzylguanidine to monitor for recurrence or metastasis.
  • Patients who have undergone resection of a pheochromocytoma or paraganglioma in the setting of a hereditary syndrome require lifelong annual biochemical screening in addition to routine screening for other component tumors of their specific syndrome.[6]

References:

  1. DeLellis RA, Lloyd RV, Heitz PU, et al., eds.: Pathology and Genetics of Tumours of Endocrine Organs. Lyon, France: IARC Press, 2004. World Health Organization classification of tumours, vol. 8.
  2. Beard CM, Sheps SG, Kurland LT, et al.: Occurrence of pheochromocytoma in Rochester, Minnesota, 1950 through 1979. Mayo Clin Proc 58 (12): 802-4, 1983.
  3. Stenström G, Svärdsudd K: Pheochromocytoma in Sweden 1958-1981. An analysis of the National Cancer Registry Data. Acta Med Scand 220 (3): 225-32, 1986.
  4. Sinclair AM, Isles CG, Brown I, et al.: Secondary hypertension in a blood pressure clinic. Arch Intern Med 147 (7): 1289-93, 1987.
  5. Anderson GH Jr, Blakeman N, Streeten DH: The effect of age on prevalence of secondary forms of hypertension in 4429 consecutively referred patients. J Hypertens 12 (5): 609-15, 1994.
  6. Omura M, Saito J, Yamaguchi K, et al.: Prospective study on the prevalence of secondary hypertension among hypertensive patients visiting a general outpatient clinic in Japan. Hypertens Res 27 (3): 193-202, 2004.
  7. Young WF Jr: Management approaches to adrenal incidentalomas. A view from Rochester, Minnesota. Endocrinol Metab Clin North Am 29 (1): 159-85, x, 2000.
  8. Neumann HP, Bausch B, McWhinney SR, et al.: Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 346 (19): 1459-66, 2002.
  9. Amar L, Bertherat J, Baudin E, et al.: Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol 23 (34): 8812-8, 2005.
  10. Jiménez C, Cote G, Arnold A, et al.: Review: Should patients with apparently sporadic pheochromocytomas or paragangliomas be screened for hereditary syndromes? J Clin Endocrinol Metab 91 (8): 2851-8, 2006.
  11. Baysal BE, Ferrell RE, Willett-Brozick JE, et al.: Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287 (5454): 848-51, 2000.
  12. Hao HX, Khalimonchuk O, Schraders M, et al.: SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325 (5944): 1139-42, 2009.
  13. Niemann S, Müller U: Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26 (3): 268-70, 2000.
  14. Astuti D, Latif F, Dallol A, et al.: Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69 (1): 49-54, 2001.
  15. Burnichon N, Brière JJ, Libé R, et al.: SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 19 (15): 3011-20, 2010.
  16. Carney JA: Gastric stromal sarcoma, pulmonary chondroma, and extra-adrenal paraganglioma (Carney Triad): natural history, adrenocortical component, and possible familial occurrence. Mayo Clin Proc 74 (6): 543-52, 1999.
  17. Carney JA, Stratakis CA: Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Genet 108 (2): 132-9, 2002.
  18. Qin Y, Yao L, King EE, et al.: Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet 42 (3): 229-33, 2010.
  19. Neumann HP, Pawlu C, Peczkowska M, et al.: Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 292 (8): 943-51, 2004.
  20. Lenders JW, Eisenhofer G, Mannelli M, et al.: Phaeochromocytoma. Lancet 366 (9486): 665-75, 2005 Aug 20-26.
  21. Klein R, Lloyd R, Young W: Hereditary Paraganglioma-Pheochromocytoma Syndromes. In: Pagon R, Bird T, Dolan C, et al., eds.: GeneReviews. Seattle, WA: University of Washington, 2009, pp. Available on line. Last accessed February 9, 2012.
  22. Kopetschke R, Slisko M, Kilisli A, et al.: Frequent incidental discovery of phaeochromocytoma: data from a German cohort of 201 phaeochromocytoma. Eur J Endocrinol 161 (2): 355-61, 2009.
  23. Motta-Ramirez GA, Remer EM, Herts BR, et al.: Comparison of CT findings in symptomatic and incidentally discovered pheochromocytomas. AJR Am J Roentgenol 185 (3): 684-8, 2005.
  24. Young WF Jr: Clinical practice. The incidentally discovered adrenal mass. N Engl J Med 356 (6): 601-10, 2007.
  25. Lenders JW, Pacak K, Walther MM, et al.: Biochemical diagnosis of pheochromocytoma: which test is best? JAMA 287 (11): 1427-34, 2002.
  26. Sawka AM, Jaeschke R, Singh RJ, et al.: A comparison of biochemical tests for pheochromocytoma: measurement of fractionated plasma metanephrines compared with the combination of 24-hour urinary metanephrines and catecholamines. J Clin Endocrinol Metab 88 (2): 553-8, 2003.
  27. Perry CG, Sawka AM, Singh R, et al.: The diagnostic efficacy of urinary fractionated metanephrines measured by tandem mass spectrometry in detection of pheochromocytoma. Clin Endocrinol (Oxf) 66 (5): 703-8, 2007.
  28. Young WF Jr: Phaeochromocytoma: how to catch a moonbeam in your hand. Eur J Endocrinol 136 (1): 28-9, 1997.
  29. Ilias I, Pacak K: Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab 89 (2): 479-91, 2004.
  30. Furuta N, Kiyota H, Yoshigoe F, et al.: Diagnosis of pheochromocytoma using [123I]-compared with [131I]-metaiodobenzylguanidine scintigraphy. Int J Urol 6 (3): 119-24, 1999.
  31. Plouin PF, Chatellier G, Fofol I, et al.: Tumor recurrence and hypertension persistence after successful pheochromocytoma operation. Hypertension 29 (5): 1133-9, 1997.
  32. van Heerden JA, Roland CF, Carney JA, et al.: Long-term evaluation following resection of apparently benign pheochromocytoma(s)/paraganglioma(s). World J Surg 14 (3): 325-9, 1990 May-Jun.
  33. Amar L, Servais A, Gimenez-Roqueplo AP, et al.: Year of diagnosis, features at presentation, and risk of recurrence in patients with pheochromocytoma or secreting paraganglioma. J Clin Endocrinol Metab 90 (4): 2110-6, 2005.
  34. Averbuch SD, Steakley CS, Young RC, et al.: Malignant pheochromocytoma: effective treatment with a combination of cyclophosphamide, vincristine, and dacarbazine. Ann Intern Med 109 (4): 267-73, 1988.

WebMD Public Information from the National Cancer Institute

Last Updated: September 04, 2014
This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.
1|2|3|4
1|2|3|4
Next Article:

Today on WebMD

Colorectal cancer cells
A common one in both men and women.
Lung cancer xray
See it in pictures, plus read the facts.
 
sauteed cherry tomatoes
Fight cancer one plate at a time.
Ovarian cancer illustration
Do you know the symptoms?
 
Jennifer Goodman Linn self-portrait
Blog
what is your cancer risk
HEALTH CHECK
 
colorectal cancer treatment advances
Video
breast cancer overview slideshow
SLIDESHOW
 
prostate cancer overview
SLIDESHOW
lung cancer overview slideshow
SLIDESHOW
 
ovarian cancer overview slideshow
SLIDESHOW
Actor Michael Douglas
Article