Find Information About:

Drugs & Supplements

Get information and reviews on prescription drugs, over-the-counter medications, vitamins, and supplements. Search by name or medical condition.

Pill Identifier

Pill Identifier

Having trouble identifying your pills?

Enter the shape, color, or imprint of your prescription or OTC drug. Our pill identification tool will display pictures that you can compare to your pill.

Get Started

My Medicine

Save your medicine, check interactions, sign up for FDA alerts, create family profiles and more.

Get Started

WebMD Health Experts and Community

Talk to health experts and other people like you in WebMD's Communities. It's a safe forum where you can create or participate in support groups and discussions about health topics that interest you.

  • Second Opinion

    Second Opinion

    Read expert perspectives on popular health topics.

  • Community


    Connect with people like you, and get expert guidance on living a healthy life.

Got a health question? Get answers provided by leading organizations, doctors, and experts.

Get Answers

Sign up to receive WebMD's award-winning content delivered to your inbox.

Sign Up

Eye Health Center

Font Size

Cellular Experiments Point to Treatments for Blindness

WebMD Health News

May 3, 2000 (Ft. Lauderdale, Fla.) -- Mice that glow green may sound like something out of The Wizard of Oz, but little rodents that shine like the Emerald City (under ultraviolet light) could hold the key to a treatment that could one day help to repair eyes damaged by common blinding diseases.

A team of Boston researchers has shown that stem cells -- primitive "master" cells that can grow into any type of cell in the body -- can, in animal models, start a new population of apparently normal vision cells known as photoreceptors. Diseases such as age-related macular degeneration and diabetic retinopathy can cause gradual deterioration of the photoreceptors, accompanied by a usually irreversible loss of sight in the central field of vision.

But, as Michael J. Young, PhD, and colleagues from Schepens Eye Research Institute in Boston reported this week at a major eye research meeting here, it may be possible to one day replace defective photoreceptors with a new, homegrown population.

As you may remember from high school biology class, the eye has cells known as rods and cones -- both are types of photoreceptors -- that allow us to see motion, shapes, and colors. The photoreceptors live in the central portion of retina, the delicate tissue covering the inside of the eyeball that serves as a screen for receiving and transmitting images to the brain.

Young and his fellow researchers have found in experiments that it may be possible to help damaged retinas heal themselves by injecting a special type of stem cell called a retinal progenitor cell into the eye. The cells would then, ideally, undergo a metamorphosis and take on the characteristics of rods and cones; cell scientists call this type of transformation "differentiation."

But, choosing the right type of stem cell is of critical importance. "In stem cell research, there is the question of 'When do you start?' Some people start right at the beginning with embryonic stem cells that have no fate, and then try to control their differentiation," Young tells WebMD. "With repair, I think the most important thing is to start at the right point. There are all these branch points, and you want to know, 'What's my target, and how do I get there?' We have no idea how to take an embryonic stem cell and turn it into a photoreceptor; we know a lot about how to take a retinal progenitor cell and turn it into a photoreceptor."

Today on WebMD

Woman holding tissue to reddened eye
Learn about causes, symptoms, and treatments.
Simple annoyance or the sign of a problem?
red eyes
Symptoms, triggers, and treatments.
blue eye with contact lens
Tips for wearing and caring.
Understanding Stye
human eye
eye exam timing
vision test
is vision correction surgery for you
high tech contacts
eye drop