Skip to content

Will 3-D Printing Revolutionize Medicine?

Font Size
A
A
A

Implantable Devices continued...

Surgeons have implanted other 3-D-printed devices into patients. Cranial plugs fill holes made in the skull for brain surgery. Cranial plates can replace large sections of the skull lost to head trauma or cancer. Mayo Clinic and some other hospitals offer 3-D-printed hip and knee replacements to eligible patients. The custom joints minimize surgery and recovery time, as surgeons do not have to chisel away at bone to put them in.

The FDA has two labs that are investigating how the technology may affect medical devices.

Living Tissue

In addition to metals and plastics, doctors and scientists around the country are loading 3-D printers with human cells and printing living tissue, called bioprinting. The Holy Grail is to print a living organ for transplant using a patient’s own cells. Some experts predict this could be just a couple of decades away and potentially revolutionize organ transplants. Patients wouldn’t die waiting for organs, and their immune systems wouldn’t reject the organs.

Atala of the Wake Forest Institute says researchers will use the miniature livers they created to test drug toxicity. They expect the method to be far more accurate than traditional animal and cell testing, he says.

Biomedical engineers use several methods to print an organ. The printer creates a plastic mold of the organ that can be covered with the human cells. Or the printer can jet the cells out inside a collagen-based gel that will hold it all together. The cells must grow on the plastic or collagen scaffold for several weeks before the organ could potentially work. After putting it into the body, the scaffold disintegrates, leaving only human tissue behind. For children, this would mean the tissues could grow with them, eliminating the need for surgeries as they grow.

Already, bioengineers at Cornell University have printed ears, and the University of Michigan is also testing the concept. Many labs already print tissue for research and drug testing, and patching damaged organs with strips of human tissue may happen in the near future, says Stuart Williams, PhD, of the Cardiovascular Innovation Institute at the University of Louisville.

Font Size