Skip to content

    Pain Management Health Center

    Font Size

    New Protein Snapshot Raises Hopes for Better Drugs

    WebMD Health News

    Aug. 3, 2000 -- To sense what's happening around us, we use our vision, hearing, and sense of touch and smell. But cells also sense and respond to what's happening in their microscopic world. Now, researchers have obtained the first detailed snapshot of a key protein that helps them do it.

    The protein and its cousins play key roles in pain relief, depression, blood pressure regulation, vision, smell, taste, and more. As a result, researchers believe that the results could lead to better drugs for a wide variety of disorders. The results were reported by an international team in Friday's issue of the journal Science.

    The protein, called rhodopsin, resides in the rod cells of the eye's retina, where it senses light and helps the cells respond by sending a signal to the brain via nerve cells.

    Rhodopsin is a member of a large family of proteins called G-protein coupled receptors (GPCRs) that help regulate blood pressure, development of embryos, heart function, hormone responses, moods, pain, and much more, says Philip Yeagle, PhD, professor and head of the department of molecular biology at the University of Connecticut, in Storrs. The detailed new snapshot of rhodopsin is "very important because [GPCRs] control a tremendous variety of cellular functions," he tells WebMD.

    To determine the structure of rhodopsin, Krzysztof Palczewski, PhD, and his colleagues from Hyogo, Japan, first isolated the protein from cow retinas. Then, through a lot of trial and error, they found a bath with the precise blend of detergents, salt, and organic molecules to coax the protein to form crystals. Finally, they determined the structure by seeing how X-rays bounce off it.

    The result was a snapshot of the protein that was much more in focus than any previous image of a GPCR, Elaine Meng, PhD, tells WebMD. Meng, who coauthored an editorial that accompanied the paper, is a staff researcher in the department of cellular and molecular pharmacology at the University of California, San Francisco.

    The new snapshot should help researchers figure out how rod cells respond to light. Light causes a shape change in rhodopsin, which sits on the surface of the cell. That, in turn, triggers a chain reaction that causes the rod cell to send a visual signal to the brain, Palczewski tells WebMD. He is a professor of chemistry, ophthalmology, and pharmacology at the University of Washington in Seattle.

    Today on WebMD

    pain in brain and nerves
    Top causes and how to find relief.
    knee exercise
    8 exercises for less knee pain.
    acupuncture needles in woman's back
    How it helps arthritis, migraines, and dental pain.
    chronic pain
    Get personalized tips to reduce discomfort.
    illustration of nerves in hand
    lumbar spine
    Woman opening window
    Man holding handful of pills
    Woman shopping for vegetables
    Sore feet with high heel shoes
    acupuncture needles in woman's back
    man with a migraine