Find Information About:

Drugs & Supplements

Get information and reviews on prescription drugs, over-the-counter medications, vitamins, and supplements. Search by name or medical condition.

Pill Identifier

Pill Identifier

Having trouble identifying your pills?

Enter the shape, color, or imprint of your prescription or OTC drug. Our pill identification tool will display pictures that you can compare to your pill.

Get Started

My Medicine

Save your medicine, check interactions, sign up for FDA alerts, create family profiles and more.

Get Started

WebMD Health Experts and Community

Talk to health experts and other people like you in WebMD's Communities. It's a safe forum where you can create or participate in support groups and discussions about health topics that interest you.

  • Second Opinion

    Second Opinion

    Read expert perspectives on popular health topics.

  • Community


    Connect with people like you, and get expert guidance on living a healthy life.

Got a health question? Get answers provided by leading organizations, doctors, and experts.

Get Answers

Sign up to receive WebMD's award-winning content delivered to your inbox.

Sign Up

Pain Management Health Center

Font Size

New Techniques Get At Pain Where It Hurts

WebMD Health News

Nov. 8, 2000 -- Thanks to modern biotechnology, the information superhighway may offer safer, more effective treatments for pain control and neurological diseases.

This information superhighway is not the Internet, but rather a sci-fi sounding nerve function called axonal transport, which allows communication between nerves by moving molecules from one end of the nerve to the other, over distances as long as four feet.

"Using the nerve itself as a conduit is the first true 21st century drug treatment," researcher Aaron Filler, MD, PhD, an assistant professor of neurosurgery at the University of California, Los Angeles, tells WebMD. "No one has realized the therapeutic possibilities until now."

Delivering drug molecules directly to pain-sensitive nerves allows more complete, longer-lasting relief with fewer side effects. Filler's research and other novel approaches to pain control were unveiled this week at the Society for Neuroscience's annual meeting in New Orleans.

"There's a lot of excitement about this among neuroscientists," Filler says. "It's like the discovery of Post-It Notes -- how do you put together old technology to do something new?"

A painkiller taken by mouth or even injected into the veins faces a perilous journey. Before reaching its intended target, it may be broken down by substances in the gut or liver, then flushed out by the kidney. To reach the brain or spinal cord, drugs must cross a roadblock called the blood-brain barrier. And drugs traveling in the bloodstream also reach other organs, causing unwanted side effects such as sleepiness, nausea, and even breathing problems.

Filler's research bypasses these problems by using axonal transport to carry drugs along the nerve to where they are needed most -- the spinal cord or brain, depending on the problem being treated. To safely convey drugs within the nerve, his group has designed a special molecule called an axonal transport facilitator that carries about 100 molecules of the drug being used. Like passengers on a bus, drug molecules can get off at different stops along the nerve or take the whole trip to the nerve cell body, where they provide long-lasting pain relief.

1 | 2 | 3

Today on WebMD

pain in brain and nerves
Top causes and how to find relief.
knee exercise
8 exercises for less knee pain.
acupuncture needles in woman's back
How it helps arthritis, migraines, and dental pain.
chronic pain
Get personalized tips to reduce discomfort.
illustration of nerves in hand
lumbar spine
Woman opening window
Man holding handful of pills
Woman shopping for vegetables
Sore feet with high heel shoes
acupuncture needles in woman's back
man with a migraine