Skip to content
Font Size

Genetics of Prostate Cancer (PDQ®): Genetics - Health Professional Information [NCI] - Methods of Prostate Cancer Genetic Research

Various research methods have been employed to uncover the landscape of genetic variation associated with prostate cancer. Specific methodologies inform of unique phenotypes or inheritance patterns. The sections below describe prostate cancer research utilizing various methods to highlight their role in uncovering the genetic basis of prostate cancer. In an effort to identify disease susceptibility genes, linkage studies are typically performed on high-risk extended families in which multiple cases of a particular disease have occurred. Typically, gene mutations identified through linkage analyses are rare in the population, highly penetrant in families, and have large effect sizes. The clinical role of mutations that are identified in linkage studies is a clearer one, establishing precedent for genetic testing for cancer with genes such as BRCA1 and BRCA2. (Refer to the BRCA1 and BRCA2 section in the Genes With Potential Clinical Relevance in Prostate Cancer Risk section of this summary for more information about these genes.) Genome-wide association studies (GWAS) are another methodology used to identify candidate loci associated with prostate cancer. Genetic variants identified from GWAS typically are common in the population and have modest effect sizes for prostate cancer risk. The clinical role of markers identified from GWAS is an active area of investigation. Case-control studies are useful in validating the findings of linkage studies and GWAS as well as for studying candidate gene alterations for association with prostate cancer risk, although the clinical role of findings from case-control studies needs to be further defined.

Linkage Analyses

Introduction to linkage analyses

The recognition that prostate cancer clusters within families has led many investigators to collect multiple-case families with the goal of localizing prostate cancer susceptibility genes through linkage studies.

Linkage studies are typically performed on high-risk kindreds in whom multiple cases of a particular disease have occurred in an effort to identify disease susceptibility genes. Linkage analysis statistically compares the genotypes between affected and unaffected individuals and looks for evidence that known genetic markers are inherited along with the disease trait. If such evidence is found (linkage), it provides statistical data that the chromosomal region near the marker also harbors a disease susceptibility gene. Once a genomic region of interest has been identified through linkage analysis, additional studies are required to prove that there truly is a susceptibility gene at that position. Linkage analysis is affected by the following:

  • Family size and having a sufficient number of family members who volunteer to contribute DNA.
  • The number of disease cases in each family.
  • Factors related to age at disease onset (e.g., utilization of screening).
  • Gender differences in disease risk (not relevant in prostate cancer but remains relevant in linkage analysis for other conditions).
  • Heterogeneity of disease in cases (e.g., aggressive vs. non-aggressive phenotype).
  • The accuracy of family history information.
1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18

WebMD Public Information from the National Cancer Institute

Last Updated: February 25, 2014
This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.
Next Article:

Today on WebMD

man with doctor
Symptoms, risks, treatments
man coughing
Men shouldn’t ignore
 
prostate cancer cells
What does this diagnosis mean?
doctor and male patient
Is it worth it?
 
cancer fighting foods
SLIDESHOW
15 Cancer Symptoms Men Ignore
FEATURE
 
Prostate Enlarged
VIDEO
Picture Of The Prostate
ANATOMY
 
Prostate Cancer Quiz
QUIZ
screening tests for men
SLIDESHOW
 
Prostate Cancer Symptoms
VIDEO
Vitamin D
SLIDESHOW