Skip to content
My WebMD Sign In, Sign Up
Font Size

Prostate Cancer Screening (PDQ®): Screening - Health Professional Information [NCI] - Significance

continued...

The biology and natural history of prostate cancer is not completely understood. Rigorous evaluation of any prostate cancer screening modality is desirable because the natural history of the disease is variable, and appropriate treatment is not clearly defined. Although the prevalence of prostate cancer and preneoplastic lesions found at autopsy steadily increases for each decade of age, most of these lesions remain clinically undetected.[28]

There is an association between primary tumor volume and local extent of disease, progression, and survival.[29] A review of a large number of prostate cancers in radical prostatectomy, cystectomy, and autopsy specimens showed that capsular penetration, seminal vesicle invasion, and lymph node metastases were usually found only with tumors larger than 1.4 cc.[30] Furthermore, the semiquantitative histopathologic grading scheme proposed by Gleason is reasonably reproducible among pathologists and correlates with the incidence of nodal metastases and with patient survival in a number of reported studies.[31]

Cancer statistics from the American Cancer Society and the National Cancer Institute indicated that between 2002 and 2008, the proportion of disease diagnosed at a locoregional stage and at a distant stage was 93% and 4% for whites, compared with 91% and 6% for African Americans, respectively.[10] Stage distribution of prostate cancer is affected substantially by the intensity of early detection efforts.

Pathologic stage does not always reflect clinical stage and upstaging (owing either to extracapsular extension, positive margins, seminal vesicle invasion, or lymph node involvement) occurs frequently. Of the prostate cancers detected by digital rectal exam (DRE) in the pre-PSA era, 67% to 88% were at a clinically localized stage (T1–2, NX, M0 [T = tumor size, N = lymph node involvement, and M = metastasis]).[32,33] However, in one of those series of 2,002 patients undergoing annual screening DRE, only one-third of men proved to have pathologically organ-confined disease.[33]

With the proliferation of PSA for early detection, reviews of large numbers of asymptomatic men with prostate cancer found that most have organ-confined disease. One study found that 63% of cancers detected in men undergoing their first screening PSA were pathologically organ-confined cancers; the percentage increased to 71% if cancer was detected on a subsequent examination.[34] In a series of 2,999 men undergoing screening with PSA, DRE, and transrectal ultrasound, 62% of the tumors detected were reported to be pathologically organ-confined.[35] While the proportion of node-positive cancers in the pre-PSA era were in the range of 25% for patients with ostensibly localized disease, current series report proportions as low as 3%.[36] Stage T1c tumors detected by serial PSA and removed by radical prostatectomy are organ-confined in 79% of cases.[37]

Survival rates for prostate cancer have improved from 1974 to the present. Lead-time and length-bias effects of early detection and the possible influence of stage migration must also be considered when trends in survival data are interpreted.[38] Reported survival rates may also vary, depending on whether the analytical methods reflect crude disease-specific rates (absolute disease-specific survival) or take into account competing risks for the given age group (relative disease-specific survival).

References:

  1. American Cancer Society.: Cancer Facts and Figures 2013. Atlanta, Ga: American Cancer Society, 2013. Available online. Last accessed March 13, 2013.
  2. Trends in SEER incidence and U.S. mortality using the joinpoint regression program, 1973-1998 with up to three joinpoints by race and age. In: Ries LA, Eisner MP, Kosary CL, et al., eds.: SEER Cancer Statistics Review 1973-1998. Bethesda, Md: National Cancer Institute, 2001., Section 22: Prostate Cancer, Table XXII-1. Also available online. Last accessed March 1, 2013.
  3. Bartsch G, Horninger W, Klocker H, et al.: Prostate cancer mortality after introduction of prostate-specific antigen mass screening in the Federal State of Tyrol, Austria. Urology 58 (3): 417-24, 2001.
  4. Potosky AL, Kessler L, Gridley G, et al.: Rise in prostatic cancer incidence associated with increased use of transurethral resection. J Natl Cancer Inst 82 (20): 1624-8, 1990.
  5. Levy IG, Gibbons L, Collins JP, et al.: Prostate cancer trends in Canada: rising incidence or increased detection? CMAJ 149 (5): 617-24, 1993.
  6. Potosky AL, Miller BA, Albertsen PC, et al.: The role of increasing detection in the rising incidence of prostate cancer. JAMA 273 (7): 548-52, 1995.
  7. Jacobsen SJ, Katusic SK, Bergstralh EJ, et al.: Incidence of prostate cancer diagnosis in the eras before and after serum prostate-specific antigen testing. JAMA 274 (18): 1445-9, 1995.
  8. Lu-Yao GL, Greenberg ER: Changes in prostate cancer incidence and treatment in USA. Lancet 343 (8892): 251-4, 1994.
  9. Devesa SS, Grauman DG, Blot WJ, et al.: Atlas of Cancer Mortality in the United States, 1950-94. Washington DC: US Govt Print Off., 1999. NIH Publ No. (NIH) 99-4564. Also available online. Last accessed March 1, 2013.
  10. Howlader N, Noone AM, Krapcho M, et al., eds.: SEER Cancer Statistics Review, 1975-2009 (Vintage 2009 Populations). Bethesda, Md: National Cancer Institute, 2012. Also available online. Last accessed February 21, 2013.
  11. Robbins AS, Whittemore AS, Van Den Eeden SK: Race, prostate cancer survival, and membership in a large health maintenance organization. J Natl Cancer Inst 90 (13): 986-90, 1998.
  12. Steinberg GD, Carter BS, Beaty TH, et al.: Family history and the risk of prostate cancer. Prostate 17 (4): 337-47, 1990.
  13. Matikainen MP, Schleutker J, Mörsky P, et al.: Detection of subclinical cancers by prostate-specific antigen screening in asymptomatic men from high-risk prostate cancer families. Clin Cancer Res 5 (6): 1275-9, 1999.
  14. Hayes RB, Brown LM, Schoenberg JB, et al.: Alcohol use and prostate cancer risk in US blacks and whites. Am J Epidemiol 143 (7): 692-7, 1996.
  15. Platz EA, Leitzmann MF, Rimm EB, et al.: Alcohol intake, drinking patterns, and risk of prostate cancer in a large prospective cohort study. Am J Epidemiol 159 (5): 444-53, 2004.
  16. Eichholzer M, Stähelin HB, Gey KF, et al.: Prediction of male cancer mortality by plasma levels of interacting vitamins: 17-year follow-up of the prospective Basel study. Int J Cancer 66 (2): 145-50, 1996.
  17. Gann PH, Hennekens CH, Sacks FM, et al.: Prospective study of plasma fatty acids and risk of prostate cancer. J Natl Cancer Inst 86 (4): 281-6, 1994.
  18. Morton MS, Griffiths K, Blacklock N: The preventive role of diet in prostatic disease. Br J Urol 77 (4): 481-93, 1996.
  19. Fleshner NE, Klotz LH: Diet, androgens, oxidative stress and prostate cancer susceptibility. Cancer Metastasis Rev 17 (4): 325-30, 1998-99.
  20. Clinton SK, Giovannucci E: Diet, nutrition, and prostate cancer. Annu Rev Nutr 18: 413-40, 1998.
  21. Chan JM, Stampfer MJ, Giovannucci E, et al.: Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279 (5350): 563-6, 1998.
  22. Oliver SE, Barrass B, Gunnell DJ, et al.: Serum insulin-like growth factor-I is positively associated with serum prostate-specific antigen in middle-aged men without evidence of prostate cancer. Cancer Epidemiol Biomarkers Prev 13 (1): 163-5, 2004.
  23. Turkes A, Peeling WB, Griffiths K: Serum IGF-1 determination in relation to prostate cancer screening: possible differential diagnosis in relation to PSA assays. Prostate Cancer Prostatic Dis 3 (3): 173-175, 2000.
  24. Stattin P, Rinaldi S, Biessy C, et al.: High levels of circulating insulin-like growth factor-I increase prostate cancer risk: a prospective study in a population-based nonscreened cohort. J Clin Oncol 22 (15): 3104-12, 2004.
  25. Chen C, Lewis SK, Voigt L, et al.: Prostate carcinoma incidence in relation to prediagnostic circulating levels of insulin-like growth factor I, insulin-like growth factor binding protein 3, and insulin. Cancer 103 (1): 76-84, 2005.
  26. American Cancer Society.: Cancer Facts and Figures 2012. Atlanta, Ga: American Cancer Society, 2012. Available online. Last accessed January 4, 2013.
  27. Altekruse SF, Kosary CL, Krapcho M, et al.: SEER Cancer Statistics Review, 1975-2007. Bethesda, Md: National Cancer Institute, 2010. Also available online. Last accessed January 10, 2013.
  28. Sakr WA, Haas GP, Cassin BF, et al.: The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol 150 (2 Pt 1): 379-85, 1993.
  29. Freedland SJ, Humphreys EB, Mangold LA, et al.: Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA 294 (4): 433-9, 2005.
  30. McNeal JE, Bostwick DG, Kindrachuk RA, et al.: Patterns of progression in prostate cancer. Lancet 1 (8472): 60-3, 1986.
  31. Resnick MI: Background for screening--epidemiology and cost effectiveness. Prog Clin Biol Res 269: 111-22, 1988.
  32. Chodak GW, Keller P, Schoenberg HW: Assessment of screening for prostate cancer using the digital rectal examination. J Urol 141 (5): 1136-8, 1989.
  33. Thompson IM, Ernst JJ, Gangai MP, et al.: Adenocarcinoma of the prostate: results of routine urological screening. J Urol 132 (4): 690-2, 1984.
  34. Catalona WJ, Smith DS, Ratliff TL, et al.: Detection of organ-confined prostate cancer is increased through prostate-specific antigen-based screening. JAMA 270 (8): 948-54, 1993.
  35. Mettlin C, Murphy GP, Lee F, et al.: Characteristics of prostate cancer detected in the American Cancer Society-National Prostate Cancer Detection Project. J Urol 152 (5 Pt 2): 1737-40, 1994.
  36. Rees MA, Resnick MI, Oesterling JE: Use of prostate-specific antigen, Gleason score, and digital rectal examination in staging patients with newly diagnosed prostate cancer. Urol Clin North Am 24 (2): 379-88, 1997.
  37. Epstein JI, Walsh PC, Carmichael M, et al.: Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 271 (5): 368-74, 1994.
  38. Pfister DG, Wells CK, Chan CK, et al.: Classifying clinical severity to help solve problems of stage migration in nonconcurrent comparisons of lung cancer therapy. Cancer Res 50 (15): 4664-9, 1990.
1|2
1|2

WebMD Public Information from the National Cancer Institute

Last Updated: February 25, 2014
This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.
Next Article:

Today on WebMD

Prostate Cancer Overview
SLIDESHOW
what is your cancer risk
HEALTH CHECK
 
Prostate Exam
VIDEO
Prostate Nerve Transplant
VIDEO
 
cancer fighting foods
SLIDESHOW
15 Cancer Symptoms Men Ignore
FEATURE
 
Prostate Enlarged
VIDEO
Picture Of The Prostate
ANATOMY
 
Prostate Cancer Quiz
QUIZ
screening tests for men
SLIDESHOW
 
Prostate Cancer Symptoms
VIDEO
Vitamin D
SLIDESHOW