Osteosarcoma and Malignant Fibrous Histiocytoma of Bone Treatment (PDQ®): Treatment - Health Professional Information [NCI] - General Information About Osteosarcoma and Malignant Fibrous Histiocytoma (MFH) of Bone

Fortunately, cancer in children and adolescents is rare, although the overall incidence of childhood cancer has been slowly increasing since 1975.[1] Children and adolescents with cancer should be referred to medical centers that have a multidisciplinary team of cancer specialists with experience treating the cancers that occur during childhood and adolescence. This multidisciplinary team approach incorporates the skills of the primary care physician, an orthopedic surgeon experienced in bone tumors, a pathologist, radiation oncologists, pediatric oncologists, rehabilitation specialists, pediatric nurse specialists, social workers, and others to ensure that children receive treatment, supportive care, and rehabilitation that will achieve optimal survival and quality of life. (Refer to the PDQ summaries on Supportive and Palliative Care for specific information about supportive care for children and adolescents with cancer.)

Guidelines for pediatric cancer centers and their role in the treatment of pediatric patients with cancer have been outlined by the American Academy of Pediatrics.[2] At these pediatric cancer centers, clinical trials are available for most types of cancer that occur in children and adolescents, and the opportunity to participate in these trials is offered to most patients/families. Clinical trials for children and adolescents with cancer are generally designed to compare potentially better therapy with therapy that is currently accepted as standard. Most of the progress made in identifying curative therapies for childhood cancers has been achieved through clinical trials. Information about ongoing clinical trials is available from the NCI Web site.

Dramatic improvements in survival have been achieved for children and adolescents with cancer. Between 1975 and 2010, childhood cancer mortality decreased by more than 50%.[1] For osteosarcoma, the 5-year survival rate increased over the same time from 40% to 76% in children younger than 15 years and from 56% to approximately 66% in adolescents aged 15 to 19 years.[1] Childhood and adolescent cancer survivors require close follow-up because cancer therapy side effects may persist or develop months or years after treatment. (Refer to the PDQ summary on Late Effects of Treatment for Childhood Cancer for specific information about the incidence, type, and monitoring of late effects in childhood and adolescent cancer survivors.)


Osteosarcoma occurs predominantly in adolescents and young adults. Review of data from the Surveillance, Epidemiology, and End Results program of the National Cancer Institute resulted in an estimate of 4.4 cases per 1 million new cases of osteosarcoma each year in people aged 0 to 24 years.[3] The U.S. Census Bureau estimates that there will be 110 million people in this age range in 2010, resulting in an incidence of roughly 450 cases per year in children and young adults younger than 25 years. Osteosarcoma accounts for approximately 5% of childhood tumors. In children and adolescents, more than 50% of these tumors arise from the long bones around the knee. Osteosarcoma can rarely be observed in soft tissue or visceral organs. There appears to be no difference in presenting symptoms, tumor location, and outcome for younger patients (<12 years) compared with adolescents.[4,5] Two trials conducted in the 1980s were designed to determine whether chemotherapy altered the natural history of osteosarcoma after surgical removal of the primary tumor. The outcome of patients in these trials who were treated with surgical removal of the primary tumor recapitulated the historical experience before 1970; more than half of these patients developed metastases within 6 months of diagnosis, and overall, approximately 90% developed recurrent disease within 2 years of diagnosis.[6] Overall survival for patients treated with surgery alone was statistically inferior.[7] The natural history of osteosarcoma has not changed over time, and fewer than 20% of patients with localized resectable primary tumors treated with surgery alone can be expected to survive free of relapse.[6,8]; [9][Level of evidence: 1iiA]

Prognostic Factors

Pretreatment factors that influence outcome include the following:[10]

  • Primary tumor site.
  • Size of the primary tumor.
  • Presence of clinically detectable metastatic disease.

After administration of preoperative chemotherapy, factors that influence outcome include the following:

  • Surgical resectability.
  • Degree of tumor necrosis.

In general, prognostic factors in osteosarcoma have not been helpful in identifying patients who might benefit from treatment intensification or who might require less therapy while maintaining an excellent outcome.


Primary tumor site

The site of the primary tumor is a significant prognostic factor for patients with localized disease. Among extremity tumors, distal sites have a more favorable prognosis than do proximal sites. Axial skeleton primary tumors are associated with the greatest risk of progression and death, primarily related to the inability to achieve a complete surgical resection. Prognostic considerations for the axial skeleton and extraskeletal sites are as follows:

  • Pelvis: Pelvic osteosarcomas make up 7% to 9% of all osteosarcomas; survival rates for patients with pelvic primary tumors are 20% to 47%.[11,12,13] Complete surgical resection is associated with positive outcome for osteosarcoma of the pelvis.[11,14]
  • Craniofacial/head and neck: In patients with craniofacial osteosarcoma, those with mandibular tumors have a significantly better prognosis than do patients with extragnathic tumors.[15] For patients with osteosarcoma of craniofacial bones, complete resection of the primary tumor with negative margins is essential for cure.[16,17,18] There is a better prognosis for patients who have osteosarcoma of the head and neck than for those who have appendicular lesions when treated with surgery alone.

    Despite a relatively high rate of inferior necrosis after neoadjuvant chemotherapy, fewer patients with craniofacial primaries develop systemic metastases than do patients with osteosarcoma originating in the extremities.[19,20,21] This low rate of metastasis may be related to the relatively smaller size and higher incidence of lower grade tumors in osteosarcoma of the head and neck.

    While small series have not shown a benefit from adjuvant chemotherapy for patients with osteosarcoma of the head and neck, one meta-analysis concluded that systemic chemotherapy improves the prognosis for these patients. Another large meta-analysis detected no benefit from chemotherapy for patients with osteosarcoma of the head and neck, but suggested that the incorporation of chemotherapy into treatment of patients with high-grade tumors may improve survival.[18] A retrospective analysis identified a trend toward better survival in patients with high-grade osteosarcoma of the mandible and maxilla who received adjuvant chemotherapy.[18,22]

    Radiation therapy was found to improve local control, disease-specific survival, and overall survival in a retrospective study of osteosarcoma of the craniofacial bones that had positive or uncertain margins after surgical resection.[23][Level of evidence: 3iiA] Radiation-associated craniofacial osteosarcomas are generally high-grade lesions, usually fibroblastic, that tend to recur locally with a high rate of metastasis.[24]

    In the German series, approximately 25% of patients with craniofacial osteosarcoma had osteosarcoma as a second tumor, and in 8 of these 13 patients, osteosarcoma arose following treatment for retinoblastoma. In this series, there was no difference in outcome for primary or secondary craniofacial osteosarcoma.[15]

  • Extraskeletal: Osteosarcoma in extraskeletal sites is rare in children and young adults. With current combined-modality therapy, the outcome for patients with extraskeletal osteosarcoma appears to be similar to that for patients with primary tumors of bone.[25]


Tumor size

Larger tumors have a worse prognosis than smaller tumors.[10,26] Tumor size has been assessed by the longest single dimension, by the cross-sectional area, or by an estimate of tumor volume; all have correlated with outcome. Serum lactate dehydrogenase (LDH), which also correlates with outcome, is a likely surrogate for tumor volume.

Presence of clinically detectable metastatic disease

Patients with localized disease have a much better prognosis than do patients with overt metastatic disease. As many as 20% of patients will have radiographically detectable metastases at diagnosis, with the lung being the most common site.[27] The prognosis for patients with metastatic disease appears to be determined largely by the site(s), the number of metastases, and the surgical resectability of the metastatic disease.[28,29]

  • Site of metastases: Prognosis appears more favorable for patients with fewer pulmonary nodules and for those with unilateral rather than bilateral pulmonary metastases;[28] not all patients with suspected pulmonary metastases at diagnosis have osteosarcoma confirmed at the time of lung resection. In one large series, approximately 25% of patients had exclusively benign lesions removed at the time of surgery.[29]
  • Number of metastases: Patients with skip metastases (at least two discontinuous lesions in the same bone) have been reported to have inferior prognoses.[30] Analysis of the German Cooperative Osteosarcoma Study experience, however, suggests that skip lesions in the same bone do not confer an inferior prognosis if they are included in planned surgical resection. Skip metastasis in a bone other than the primary bone should be considered systemic metastasis. Historically, metastasis across a joint was referred to as a skip lesion. Skip lesions across a joint might be considered hematogenous spread and have a worse prognosis.[31]

    Patients with multifocal osteosarcoma (defined as multiple bone lesions without a clear primary tumor) have an extremely poor prognosis.[32]

  • Surgical resectability of metastases: Patients who have complete surgical ablation of the primary and metastatic tumor (when confined to the lung) after chemotherapy may attain long-term survival, although overall event-free survival remains about 20% to 30% for patients with metastatic disease at diagnosis.[28,29,33,34]


Adequacy of tumor resection

Resectability of the tumor is a critical prognostic feature because osteosarcoma is relatively resistant to radiation therapy. Complete resection of the primary tumor and any skip lesions with adequate margins is generally considered essential for cure. A retrospective review of patients with craniofacial osteosarcoma performed by the German-Austrian-Swiss osteosarcoma cooperative group reported that incomplete surgical resection was associated with inferior survival probability.[15][Level of evidence: 3iiB] In a European cooperative study, the size of the margin was not significant. However, having both the biopsy and resection at a center with orthopedic oncology experience conferred a better prognosis.[12]

For patients with axial skeletal primaries who either do not have surgery for their primary tumor or who have surgery that results in positive margins, radiation therapy may improve survival.[14,35]

Necrosis following induction or neoadjuvant chemotherapy

Most treatment protocols for osteosarcoma use an initial period of systemic chemotherapy before definitive resection of the primary tumor (or resection of sites of metastases). The pathologist assesses necrosis in the resected tumor. Patients with at least 90% necrosis in the primary tumor after induction chemotherapy have a better prognosis than those with less necrosis.[26] Patients with less necrosis (<90%) in the primary tumor following initial chemotherapy have a higher rate of recurrence within the first 2 years compared with patients with a more favorable amount of necrosis (≥90%).[36] Less necrosis should not be interpreted to mean that chemotherapy has been ineffective; cure rates for patients with little or no necrosis following induction chemotherapy are much higher than cure rates for patients who receive no chemotherapy.

Imaging modalities such as dynamic magnetic resonance imaging or positron emission tomography scanning are under investigation as noninvasive methods to assess response.[37,38,39,40,41,42,43,44]

Additional prognostic factors

Other prognostic factors include the following:

  • Subsequent neoplasms. Patients with osteosarcoma as a subsequent neoplasm, including tumors arising in a radiation field, share the same prognosis as patients with de novo osteosarcoma if they are treated aggressively with complete surgical resection and multiagent chemotherapy.[45,46,47,48]
  • High-grade osteosarcoma. Possible prognostic factors identified for patients with conventional localized high-grade osteosarcoma include the age of the patient, LDH level, alkaline phosphatase level, and histologic subtype.[26,49,50,51,52,53,54] Older patients appear to have a poorer outcome.[54,55]
  • Increased body mass index at initial presentation is associated with worse overall survival.[56]


Pathologic fracture at diagnosis or during preoperative chemotherapy does not have adverse prognostic significance.[57]; [58][Level of evidence: 3iiiA]

The following potential prognostic factors have been identified but have not been tested in large numbers of patients:

  • HER2/c-erbB-2 expression. There are conflicting data concerning the prognostic significance of this human epidermal growth factor.[59,60,61]
  • Tumor cell ploidy.
  • Specific chromosomal gains or losses.[62]
  • Loss of heterozygosity of the RB gene.[63,64]
  • Loss of heterozygosity of the p53 locus.[65]
  • Increased expression of p-glycoprotein.[66,67] A prospective analysis of p-glycoprotein expression determined by immunohistochemistry failed to identify prognostic significance for newly diagnosed patients with osteosarcoma, although earlier studies suggested that overexpression of p-glycoprotein predicted for poor outcome.[68]
  • Time to definitive surgery. In a large series, a delay of 21 days or longer from the time of definitive surgery to the resumption of chemotherapy was an adverse prognostic factor.[69]

Syndromes Associated With Osteosarcoma

Genetic diseases that predispose to osteosarcoma

Table 1. Genetic Diseases That Predispose to Osteosarcomaa

Syndrome Description Location Gene Function
AML = acute myeloid leukemia; IL-1 = interleukin-1; MDS = myelodysplastic syndrome; TNF = tumor necrosis factor.
a Table adapted from Kansara and Thomas.[70]
Bloom syndrome[71] Rare inherited disorder characterized by short stature and sun-sensitive skin changes. Often presents with a long, narrow face, small lower jaw, large nose, and prominent ears. 15q26.1 BLM(RecQL3) DNA helicase
Diamond-Blackfan anemia[72] Inherited pure red cell aplasia. Patients at risk for MDS and AML. Associated with skeletal abnormalities, such as abnormal facial features (flat nasal bridge, widely spaced eyes). Ribosomal proteins Ribosome production[72,73]
Li-Fraumeni syndrome[74] Inherited mutation inTP53gene. Affected family members at increased risk for bone tumors, breast cancer, leukemia, brain tumors, and sarcomas. 17p13.1 P53 DNA damage response
Paget disease[75] Excessive breakdown of bone with abnormal bone formation and remodeling, resulting in pain from weak, malformed bone. 18q21-qa22 LOH18CR1 IL-1/TNF signaling; RANK signaling pathway
Retinoblastoma[76] Malignant tumor of the retina. Approximately 66% diagnosed by age 2 years and 95% by age 3 years. Patients with heritable germ cell mutations at greater risk for subsequent neoplasms. 13q14.2 RB1 Cell-cycle checkpoint
Rothmund-Thomson syndrome[77,78] Also called poikiloderma congenitale. Autosomal recessive condition. Associated with skin findings (atrophy, telangiectasias, pigmentation), sparse hair, cataracts, small stature, and skeletal abnormalities. Increased incidence of osteosarcoma at a younger age. 8q24.3 RTS(RecQL4) DNA helicase
Werner syndrome[79] Patients often have short stature and in their early twenties, develop signs of aging, including graying of hair and hardening of skin. Other aging problems such as cataracts, skin ulcers, and atherosclerosis develop later. 8p12-p11.2 WRN(RecQL2) DNA helicase; exonuclease activity


Refer to the following summaries for more information about these genetic syndromes:


  1. Smith MA, Altekruse SF, Adamson PC, et al.: Declining childhood and adolescent cancer mortality. Cancer 120 (16): 2497-506, 2014.
  2. Guidelines for the pediatric cancer center and role of such centers in diagnosis and treatment. American Academy of Pediatrics Section Statement Section on Hematology/Oncology. Pediatrics 99 (1): 139-41, 1997.
  3. Mirabello L, Troisi RJ, Savage SA: Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer 115 (7): 1531-43, 2009.
  4. Bacci G, Longhi A, Bertoni F, et al.: Primary high-grade osteosarcoma: comparison between preadolescent and older patients. J Pediatr Hematol Oncol 27 (3): 129-34, 2005.
  5. Bacci G, Balladelli A, Palmerini E, et al.: Neoadjuvant chemotherapy for osteosarcoma of the extremities in preadolescent patients: the Rizzoli Institute experience. J Pediatr Hematol Oncol 30 (12): 908-12, 2008.
  6. Link MP, Goorin AM, Miser AW, et al.: The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med 314 (25): 1600-6, 1986.
  7. Link MP: The multi-institutional osteosarcoma study: an update. Cancer Treat Res 62: 261-7, 1993.
  8. Bacci G, Ferrari S, Longhi A, et al.: Nonmetastatic osteosarcoma of the extremity with pathologic fracture at presentation: local and systemic control by amputation or limb salvage after preoperative chemotherapy. Acta Orthop Scand 74 (4): 449-54, 2003.
  9. Bernthal NM, Federman N, Eilber FR, et al.: Long-term results (>25 years) of a randomized, prospective clinical trial evaluating chemotherapy in patients with high-grade, operable osteosarcoma. Cancer 118 (23): 5888-93, 2012.
  10. Pakos EE, Nearchou AD, Grimer RJ, et al.: Prognostic factors and outcomes for osteosarcoma: an international collaboration. Eur J Cancer 45 (13): 2367-75, 2009.
  11. Donati D, Giacomini S, Gozzi E, et al.: Osteosarcoma of the pelvis. Eur J Surg Oncol 30 (3): 332-40, 2004.
  12. Andreou D, Bielack SS, Carrle D, et al.: The influence of tumor- and treatment-related factors on the development of local recurrence in osteosarcoma after adequate surgery. An analysis of 1355 patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. Ann Oncol 22 (5): 1228-35, 2011.
  13. Isakoff MS, Barkauskas DA, Ebb D, et al.: Poor survival for osteosarcoma of the pelvis: a report from the Children's Oncology Group. Clin Orthop Relat Res 470 (7): 2007-13, 2012.
  14. Ozaki T, Flege S, Kevric M, et al.: Osteosarcoma of the pelvis: experience of the Cooperative Osteosarcoma Study Group. J Clin Oncol 21 (2): 334-41, 2003.
  15. Jasnau S, Meyer U, Potratz J, et al.: Craniofacial osteosarcoma Experience of the cooperative German-Austrian-Swiss osteosarcoma study group. Oral Oncol 44 (3): 286-94, 2008.
  16. Patel SG, Meyers P, Huvos AG, et al.: Improved outcomes in patients with osteogenic sarcoma of the head and neck. Cancer 95 (7): 1495-503, 2002.
  17. Smith RB, Apostolakis LW, Karnell LH, et al.: National Cancer Data Base report on osteosarcoma of the head and neck. Cancer 98 (8): 1670-80, 2003.
  18. Fernandes R, Nikitakis NG, Pazoki A, et al.: Osteogenic sarcoma of the jaw: a 10-year experience. J Oral Maxillofac Surg 65 (7): 1286-91, 2007.
  19. Smeele LE, Kostense PJ, van der Waal I, et al.: Effect of chemotherapy on survival of craniofacial osteosarcoma: a systematic review of 201 patients. J Clin Oncol 15 (1): 363-7, 1997.
  20. Ha PK, Eisele DW, Frassica FJ, et al.: Osteosarcoma of the head and neck: a review of the Johns Hopkins experience. Laryngoscope 109 (6): 964-9, 1999.
  21. Duffaud F, Digue L, Baciuchka-Palmaro M, et al.: Osteosarcomas of flat bones in adolescents and adults. Cancer 88 (2): 324-32, 2000.
  22. Canadian Society of Otolaryngology-Head and Neck Surgery Oncology Study Group: Osteogenic sarcoma of the mandible and maxilla: a Canadian review (1980-2000). J Otolaryngol 33 (3): 139-44, 2004.
  23. Guadagnolo BA, Zagars GK, Raymond AK, et al.: Osteosarcoma of the jaw/craniofacial region: outcomes after multimodality treatment. Cancer 115 (14): 3262-70, 2009.
  24. McHugh JB, Thomas DG, Herman JM, et al.: Primary versus radiation-associated craniofacial osteosarcoma: Biologic and clinicopathologic comparisons. Cancer 107 (3): 554-62, 2006.
  25. Goldstein-Jackson SY, Gosheger G, Delling G, et al.: Extraskeletal osteosarcoma has a favourable prognosis when treated like conventional osteosarcoma. J Cancer Res Clin Oncol 131 (8): 520-6, 2005.
  26. Bielack SS, Kempf-Bielack B, Delling G, et al.: Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 20 (3): 776-90, 2002.
  27. Meyers PA, Schwartz CL, Krailo M, et al.: Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol 23 (9): 2004-11, 2005.
  28. Harris MB, Gieser P, Goorin AM, et al.: Treatment of metastatic osteosarcoma at diagnosis: a Pediatric Oncology Group Study. J Clin Oncol 16 (11): 3641-8, 1998.
  29. Bacci G, Rocca M, Salone M, et al.: High grade osteosarcoma of the extremities with lung metastases at presentation: treatment with neoadjuvant chemotherapy and simultaneous resection of primary and metastatic lesions. J Surg Oncol 98 (6): 415-20, 2008.
  30. Sajadi KR, Heck RK, Neel MD, et al.: The incidence and prognosis of osteosarcoma skip metastases. Clin Orthop Relat Res (426): 92-6, 2004.
  31. Kager L, Zoubek A, Kastner U, et al.: Skip metastases in osteosarcoma: experience of the Cooperative Osteosarcoma Study Group. J Clin Oncol 24 (10): 1535-41, 2006.
  32. Bacci G, Fabbri N, Balladelli A, et al.: Treatment and prognosis for synchronous multifocal osteosarcoma in 42 patients. J Bone Joint Surg Br 88 (8): 1071-5, 2006.
  33. Goorin AM, Shuster JJ, Baker A, et al.: Changing pattern of pulmonary metastases with adjuvant chemotherapy in patients with osteosarcoma: results from the multiinstitutional osteosarcoma study. J Clin Oncol 9 (4): 600-5, 1991.
  34. Bacci G, Mercuri M, Longhi A, et al.: Grade of chemotherapy-induced necrosis as a predictor of local and systemic control in 881 patients with non-metastatic osteosarcoma of the extremities treated with neoadjuvant chemotherapy in a single institution. Eur J Cancer 41 (14): 2079-85, 2005.
  35. DeLaney TF, Park L, Goldberg SI, et al.: Radiotherapy for local control of osteosarcoma. Int J Radiat Oncol Biol Phys 61 (2): 492-8, 2005.
  36. Kim MS, Cho WH, Song WS, et al.: time dependency of prognostic factors in patients with stage II osteosarcomas. Clin Orthop Relat Res 463: 157-65, 2007.
  37. Reddick WE, Wang S, Xiong X, et al.: Dynamic magnetic resonance imaging of regional contrast access as an additional prognostic factor in pediatric osteosarcoma. Cancer 91 (12): 2230-7, 2001.
  38. Hawkins DS, Conrad EU 3rd, Butrynski JE, et al.: [F-18]-fluorodeoxy-D-glucose-positron emission tomography response is associated with outcome for extremity osteosarcoma in children and young adults. Cancer 115 (15): 3519-25, 2009.
  39. Cheon GJ, Kim MS, Lee JA, et al.: Prediction model of chemotherapy response in osteosarcoma by 18F-FDG PET and MRI. J Nucl Med 50 (9): 1435-40, 2009.
  40. Costelloe CM, Macapinlac HA, Madewell JE, et al.: 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med 50 (3): 340-7, 2009.
  41. Hamada K, Tomita Y, Inoue A, et al.: Evaluation of chemotherapy response in osteosarcoma with FDG-PET. Ann Nucl Med 23 (1): 89-95, 2009.
  42. Bajpai J, Kumar R, Sreenivas V, et al.: Prediction of chemotherapy response by PET-CT in osteosarcoma: correlation with histologic necrosis. J Pediatr Hematol Oncol 33 (7): e271-8, 2011.
  43. Kong CB, Byun BH, Lim I, et al.: ¹⁸F-FDG PET SUVmax as an indicator of histopathologic response after neoadjuvant chemotherapy in extremity osteosarcoma. Eur J Nucl Med Mol Imaging 40 (5): 728-36, 2013.
  44. Byun BH, Kong CB, Lim I, et al.: Combination of 18F-FDG PET/CT and diffusion-weighted MR imaging as a predictor of histologic response to neoadjuvant chemotherapy: preliminary results in osteosarcoma. J Nucl Med 54 (7): 1053-9, 2013.
  45. Bielack SS, Kempf-Bielack B, Heise U, et al.: Combined modality treatment for osteosarcoma occurring as a second malignant disease. Cooperative German-Austrian-Swiss Osteosarcoma Study Group. J Clin Oncol 17 (4): 1164, 1999.
  46. Tabone MD, Terrier P, Pacquement H, et al.: Outcome of radiation-related osteosarcoma after treatment of childhood and adolescent cancer: a study of 23 cases. J Clin Oncol 17 (9): 2789-95, 1999.
  47. Shaheen M, Deheshi BM, Riad S, et al.: Prognosis of radiation-induced bone sarcoma is similar to primary osteosarcoma. Clin Orthop Relat Res 450: 76-81, 2006.
  48. Bacci G, Longhi A, Forni C, et al.: Neoadjuvant chemotherapy for radioinduced osteosarcoma of the extremity: The Rizzoli experience in 20 cases. Int J Radiat Oncol Biol Phys 67 (2): 505-11, 2007.
  49. Meyers PA, Heller G, Healey J, et al.: Chemotherapy for nonmetastatic osteogenic sarcoma: the Memorial Sloan-Kettering experience. J Clin Oncol 10 (1): 5-15, 1992.
  50. Bacci G, Longhi A, Versari M, et al.: Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy: 15-year experience in 789 patients treated at a single institution. Cancer 106 (5): 1154-61, 2006.
  51. Bieling P, Rehan N, Winkler P, et al.: Tumor size and prognosis in aggressively treated osteosarcoma. J Clin Oncol 14 (3): 848-58, 1996.
  52. Ferrari S, Bertoni F, Mercuri M, et al.: Predictive factors of disease-free survival for non-metastatic osteosarcoma of the extremity: an analysis of 300 patients treated at the Rizzoli Institute. Ann Oncol 12 (8): 1145-50, 2001.
  53. Kager L, Zoubek A, Dominkus M, et al.: Osteosarcoma in very young children: experience of the Cooperative Osteosarcoma Study Group. Cancer 116 (22): 5316-24, 2010.
  54. Janeway KA, Barkauskas DA, Krailo MD, et al.: Outcome for adolescent and young adult patients with osteosarcoma: a report from the Children's Oncology Group. Cancer 118 (18): 4597-605, 2012.
  55. Collins M, Wilhelm M, Conyers R, et al.: Benefits and adverse events in younger versus older patients receiving neoadjuvant chemotherapy for osteosarcoma: findings from a meta-analysis. J Clin Oncol 31 (18): 2303-12, 2013.
  56. Altaf S, Enders F, Jeavons E, et al.: High-BMI at diagnosis is associated with inferior survival in patients with osteosarcoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 60 (12): 2042-6, 2013.
  57. Kim MS, Lee SY, Lee TR, et al.: Prognostic effect of pathologic fracture in localized osteosarcoma: a cohort/case controlled study at a single institute. J Surg Oncol 100 (3): 233-9, 2009.
  58. Xie L, Guo W, Li Y, et al.: Pathologic fracture does not influence local recurrence and survival in high-grade extremity osteosarcoma with adequate surgical margins. J Surg Oncol 106 (7): 820-5, 2012.
  59. Gorlick R, Huvos AG, Heller G, et al.: Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol 17 (9): 2781-8, 1999.
  60. Onda M, Matsuda S, Higaki S, et al.: ErbB-2 expression is correlated with poor prognosis for patients with osteosarcoma. Cancer 77 (1): 71-8, 1996.
  61. Kilpatrick SE, Geisinger KR, King TS, et al.: Clinicopathologic analysis of HER-2/neu immunoexpression among various histologic subtypes and grades of osteosarcoma. Mod Pathol 14 (12): 1277-83, 2001.
  62. Ozaki T, Schaefer KL, Wai D, et al.: Genetic imbalances revealed by comparative genomic hybridization in osteosarcomas. Int J Cancer 102 (4): 355-65, 2002.
  63. Feugeas O, Guriec N, Babin-Boilletot A, et al.: Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcoma. J Clin Oncol 14 (2): 467-72, 1996.
  64. Heinsohn S, Evermann U, Zur Stadt U, et al.: Determination of the prognostic value of loss of heterozygosity at the retinoblastoma gene in osteosarcoma. Int J Oncol 30 (5): 1205-14, 2007.
  65. Goto A, Kanda H, Ishikawa Y, et al.: Association of loss of heterozygosity at the p53 locus with chemoresistance in osteosarcomas. Jpn J Cancer Res 89 (5): 539-47, 1998.
  66. Serra M, Pasello M, Manara MC, et al.: May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int J Oncol 29 (6): 1459-68, 2006.
  67. Pakos EE, Ioannidis JP: The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer 98 (3): 581-9, 2003.
  68. Schwartz CL, Gorlick R, Teot L, et al.: Multiple drug resistance in osteogenic sarcoma: INT0133 from the Children's Oncology Group. J Clin Oncol 25 (15): 2057-62, 2007.
  69. Imran H, Enders F, Krailo M, et al.: Effect of time to resumption of chemotherapy after definitive surgery on prognosis for non-metastatic osteosarcoma. J Bone Joint Surg Am 91 (3): 604-12, 2009.
  70. Kansara M, Thomas DM: Molecular pathogenesis of osteosarcoma. DNA Cell Biol 26 (1): 1-18, 2007.
  71. German J: Bloom's syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet 93 (1): 100-6, 1997.
  72. Lipton JM, Federman N, Khabbaze Y, et al.: Osteogenic sarcoma associated with Diamond-Blackfan anemia: a report from the Diamond-Blackfan Anemia Registry. J Pediatr Hematol Oncol 23 (1): 39-44, 2001.
  73. Idol RA, Robledo S, Du HY, et al.: Cells depleted for RPS19, a protein associated with Diamond Blackfan Anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells Mol Dis 39 (1): 35-43, 2007 Jul-Aug.
  74. Li FP, Fraumeni JF Jr, Mulvihill JJ, et al.: A cancer family syndrome in twenty-four kindreds. Cancer Res 48 (18): 5358-62, 1988.
  75. Grimer RJ, Cannon SR, Taminiau AM, et al.: Osteosarcoma over the age of forty. Eur J Cancer 39 (2): 157-63, 2003.
  76. Wong FL, Boice JD Jr, Abramson DH, et al.: Cancer incidence after retinoblastoma. Radiation dose and sarcoma risk. JAMA 278 (15): 1262-7, 1997.
  77. Wang LL, Gannavarapu A, Kozinetz CA, et al.: Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst 95 (9): 669-74, 2003.
  78. Hicks MJ, Roth JR, Kozinetz CA, et al.: Clinicopathologic features of osteosarcoma in patients with Rothmund-Thomson syndrome. J Clin Oncol 25 (4): 370-5, 2007.
  79. Goto M, Miller RW, Ishikawa Y, et al.: Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev 5 (4): 239-46, 1996.
WebMD Public Information from the National Cancer Institute
This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.Some material in CancerNet™ is from copyrighted publications of the respective copyright claimants. Users of CancerNet™ are referred to the publication data appearing in the bibliographic citations, as well as to the copyright notices appearing in the original publication, all of which are hereby incorporated by reference.