What Is the Scientific Method?

Medically Reviewed by Zilpah Sheikh, MD on March 14, 2024
9 min read

The scientific method is a systematic way of conducting experiments or studies so that you can explore the things you observe in the world and answer questions about them. The scientific method, also known as the hypothetico-deductive method, is a series of steps that can help you accurately describe the things you observe or improve your understanding of them.

Ultimately, your goal when you use the scientific method is to:

  • Find a cause-and-effect relationship by asking a question about something you observed
  • Collect as much evidence as you can about what you observed, as this can help you explore the connection between your evidence and what you observed
  • Determine if all your evidence can be combined to answer your question in a way that makes sense

Francis Bacon and René Descartes are usually credited with formalizing the process in the 16th and 17th centuries. The two philosophers argued that research shouldn’t be guided by preset metaphysical ideas of how reality works. They supported the use of inductive reasoning to come up with hypotheses and understand new things about reality.

The scientific method is a step-by-step problem-solving process. These steps include:

Observe the world around you. This will help you come up with a topic you are interested in and want to learn more about. In many cases, you already have a topic in mind because you have a related question for which you couldn't find an immediate answer.

Either way, you'll start the process by finding out what people before you already know about the topic, as well as any questions that people are still asking about. You may need to look up and read books and articles from academic journals or talk to other people so that you understand as much as you possibly can about your topic. This will help you with your next step.

Ask questions. Askingquestions about what you observed and learned from reading and talking to others can help you figure out what the "problem" is. Scientists try to ask questions that are both interesting and specific and can be answered with the help of a fairly easy experiment or series of experiments. Your question should have one part (called a variable) that you can change in your experiment and another variable that you can measure. Your goal is to design an experiment that is a "fair test," which is when all the conditions in the experiment are kept the same except for the one you change (called the experimental or independent variable).

Form a hypothesis and make predictions based on it. A hypothesis is an educated guess about the relationship between two or more variables in your question. A good hypothesis lets you predict what will happen when you test it in an experiment. Another important feature of a good hypothesis is that, if the hypothesis is wrong, you should be able to show that it's wrong. This is called falsifiability. If your experiment shows that your prediction is true, then your hypothesis is supported by your data.

Test your prediction by doing an experiment or making more observations. The way you test your prediction depends on what you are studying. The best support comes from an experiment, but in some cases, it's too hard or impossible to change the variables in an experiment. Sometimes, you may need to do descriptive research where you gather more observations instead of doing an experiment. You will carefully gather notes and measurements during your experiments or studies, and you can share them with other people interested in the same question as you. Ideally, you will also repeat your experiment a couple more times because it's possible to get a result by chance, but it's less possible to get the same result more than once by chance.

Draw a conclusion. You will analyze what you already know about your topic from your literature research and the data gathered during your experiment. This will help you decide if the conclusion you draw from your data supports or contradicts your hypothesis. If your results contradict your hypothesis, you can use this observation to form a new hypothesis and make a new prediction. This is why scientific research is ongoing and scientific knowledge is changing all the time. It's very common for scientists to get results that don't support their hypotheses. In fact, you sometimes learn more about the world when your experiments don't support your hypotheses because it leads you to ask more questions. And this time around, you already know that one possible explanation is likely wrong.

Use your results to guide your next steps (iterate). For instance, if your hypothesis is supported, you may do more experiments to confirm it. Or you could come up with a hypothesis about why it works this way and design an experiment to test that. If your hypothesis is not supported, you can come up with another hypothesis and do experiments to test it. You'll rarely get the right hypothesis in one go. Most of the time, you'll have to go back to the hypothesis stage and try again. Every attempt offers you important information that helps you improve your next round of questions, hypotheses, and predictions.

Share your results. Scientific research isn't something you can do on your own; you must work with other people to do it. You may be able to do an experiment or a series of experiments on your own, but you can't come up with all the ideas or do all the experiments by yourself.

Scientists and researchers usually share information by publishing it in a scientific journal or by presenting it to their colleagues during meetings and scientific conferences. These journals are read and the conferences are attended by other researchers who are interested in the same questions. If there's anything wrong with your hypothesis, prediction, experiment design, or conclusion, other researchers will likely find it and point it out to you.

It can be scary, but it's a critical part of doing scientific research. You must let your research be examined by other researchers who are as interested and knowledgeable about your question as you. This process helps other researchers by pointing out hypotheses that have been proved wrong and why they are wrong. It helps you by identifying flaws in your thinking or experiment design. And if you don't share what you've learned and let other people ask questions about it, it's not helpful to your or anyone else's understanding of what happens in the world.

Here's an everyday example of how you can apply the scientific method to understand more about your world so you can solve your problems in a helpful way.

Let's say you put slices of bread in your toaster and press the button, but nothing happens. Your toaster isn't working, but you can't afford to buy a new one right now. You might be able to rescue it from the trash can if you can figure out what's wrong with it. So, let's figure out what's wrong with your toaster.

Observation. Your toaster isn't working to toast your bread.

Ask a question. In this case, you're asking, "Why isn't my toaster working?" You could even do a bit of preliminary research by looking in the owner's manual for your toaster. The manufacturer has likely tested your toaster model under many conditions, and they may have some ideas for where to start with your hypothesis.

Form a hypothesis and make predictions based on it. Your hypothesis should be a potential explanation or answer to the question that you can test to see if it's correct. One possible explanation that we could test is that the power outlet is broken. Our prediction is that if the outlet is broken, then plugging it into a different outlet should make the toaster work again.

Test your prediction by doing an experiment or making more observations. You plug the toaster into a different outlet and try to toast your bread.

If that works, then your hypothesis is supported by your experimental data. Results that support your hypothesis don't prove it right; they simply suggest that it's a likely explanation. This uncertainty arises because, in the real world, we can't rule out the possibility of mistakes, wrong assumptions, or weird coincidences affecting the results. If the toaster doesn’t work even after plugging it into a different outlet, then your hypothesis is not supported and it's likely the wrong explanation.

Use your results to guide your next steps (iteration). If your toaster worked, you may decide to do further tests to confirm it or revise it. For example, you could plug something else that you know is working into the first outlet to see if that stops working too. That would be further confirmation that your hypothesis is correct.

If your toaster failed to toast when plugged into the second outlet, you need a new hypothesis. For example, your next hypothesis might be that the toaster has a shorted wire. You could test this hypothesis directly if you have the right equipment and training, or you could take it to a repair shop where they could test that hypothesis for you.

Share your results. For this everyday example, you probably wouldn't want to write a paper, but you could share your problem-solving efforts with your housemates or anyone you hire to repair your outlet or help you test if the toaster has a short circuit.

The scientific method is useful whenever you need to reason logically about your questions and gather evidence to support your problem-solving efforts. So, you can use it in everyday life to answer many of your questions; however, when most people think of the scientific method, they likely think of using it to:

Describe how nature works. It can be hard to accurately describe how nature works because it's almost impossible to account for every variable that's involved in a natural process. Researchers may not even know about many of the variables that are involved. In some cases, all you can do is make assumptions. But you can use the scientific method to logically disprove wrong assumptions by identifying flaws in the reasoning.

Do scientific research in a laboratory to develop things such as new medicines.

Develop critical thinking skills. Using the scientific method may help you develop critical thinking in your daily life because you learn to systematically ask questions and gather evidence to find answers. Without logical reasoning, you might be more likely to have a distorted perspective or bias. Bias is the inclination we all have to favor one perspective (usually our own) over another.

The scientific method doesn't perfectly solve the problem of bias, but it does make it harder for an entire field to be biased in the same direction. That's because it's unlikely that all the people working in a field have the same biases. It also helps make the biases of individuals more obvious because if you repeatedly misinterpret information in the same way in multiple experiments or over a period, the other people working on the same question will notice. If you don't correct your bias when others point it out to you, you'll lose your credibility. Other people might then stop believing what you have to say.

When you use the scientific method, your goal is to do research in a fair, unbiased, and repeatable way. The scientific method helps meet these goals because:

It's a systematic approach to problem-solving. It can help you figure out where you're going wrong in your thinking and research if you're not getting helpful answers to your questions. Helpful answers solve problems and keep you moving forward. So, a systematic approach helps you improve your problem-solving abilities if you get stuck.

It can help you solve your problems. The scientific method helps you isolate problems by focusing on what's important. In addition, it can help you make your solutions better every time you go through the process.

It helps you eliminate (or become aware of) your personal biases. It can help you limit the influence of your own personal, preconceived notions. A big part of the process is considering what other people already know and think about your question. It also involves sharing what you've learned and letting other people ask about your methods and conclusions. At the end of the process, even if you still think your answer is best, you have considered what other people know and think about the question.

The scientific method is a systematic way of conducting experiments or studies so that you can explore the world around you and answer questions using reason and evidence. It's a step-by-step problem-solving process that involves: (1) observation, (2) asking questions, (3) forming hypotheses and making predictions, (4) testing your hypotheses through experiments or more observations, (5) using what you learned through experiment or observation to guide further investigation, and (6) sharing your results.