Skip to content

Brain & Nervous System Health Center

Spinal Injuries: Cell Transplant Work Moving Forward

Font Size
A
A
A

WebMD Health News

April 27, 2001 (Toronto) -- A hot new area of scientific investigation revolves around using stem cells to repair damage done to certain parts of the body. Stem cells have the unique ability to transform themselves, after transplantation, into the types of cells or tissues in their new surroundings. The most adaptable of these stem cells come from fetuses, but using those is very controversial. New research suggests that one day we might not have to.

 

Results from a mouse study presented here at the 69th annual meeting of the American Association of Neurological Surgeons (AANS) suggests that transplanting adult stem cells from the brain into the spinal cord may someday prove an effective therapy for people suffering from spinal cord injury.

 

Researchers studied this approach in 15 adult female mice with moderately severe spinal cord injury. Eight of the mice received cell transplants taken from special regions in the brain, while the other seven got nothing.

 

For seven days after the transplantation, researchers kept track of the mice's movement and the function of their nervous system. The mice that received the transplanted cells were found to be more mobile, according to study co-author Charles Tator, MD, PhD, a neurosurgeon at Toronto Western Hospital.

 

Although their mobility improved slightly, Tator stresses that the mice were far from back to normal. "None of these mice could walk normally afterward," he says. "I wouldn't want to create the impression that we returned them to normal after one week."

 

However, Tator says, if the mice had been assessed for longer than one week, better results may have been seen.

 

Tator's research group also reported some positive findings about the cells themselves following transplantation.

 

"What we found was that these cells survived ... and formed new supporting cells in the spinal cord," he tells WebMD.

 

"The uniqueness of our work is that this was an adult brain cell, so it does away with the concern of using fetal cells," says Tator. Translating this mouse work into humans, he says, may mean removing stem cells from a deceased person, growing them in the laboratory, and then transplanting them into a person with either spinal cord injury or a potential host of other neurological conditions.

Today on WebMD

nerve damage
Learn how this disease affects the nervous system.
senior woman with lost expression
Know the early warning signs.
 
woman in art gallery
Tips to stay smart, sharp, and focused.
medical marijuana plant
What is it used for?
 
senior man
Article
boy hits soccer ball with head
Slideshow
 
Graphic of active brain
Article
Vaccine and needle
VIDEO
 
brain illustration stroke
Slideshow
human brain
Article
 
most common stroke symptoms
Article
Graphic of number filled head and dna double helix
Quiz