Skip to content
My WebMD Sign In, Sign Up

Cancer Health Center

Font Size

Wilms Tumor and Other Childhood Kidney Tumors Treatment (PDQ®): Treatment - Health Professional Information [NCI] - General Information

continued...

Beckwith-Wiedemann syndrome results from constitutional loss of imprinting or heterozygosity of WT2. Observations suggest genetic heterogeneity in the etiology of Beckwith-Wiedemann syndrome with differing levels of association with risk of tumor formation.[48] Molecularly defined subsets of Beckwith-Wiedemann patients may not require ultrasound screening for malignancies. Approximately one-fifth of patients with Beckwith-Wiedemann syndrome who develop Wilms tumor present with bilateral disease, though metachronous bilateral disease is also observed.[15,16,17] The prevalence of Beckwith-Wiedemann syndrome is about 1% among children with Wilms tumor reported to the NWTS.[17,49,50]

Wilms tumor gene on the X chromosome(WTX)

A third gene, WTX, has been identified on the X chromosome and plays a role in normal kidney development. WTX mutations were identified in 17% of Wilms tumors, equally distributed between males and females.[51] This gene is inactivated in approximately one-third of Wilms tumors but germline mutations have not been observed in patients with Wilms tumor.[52]

Other genes

Additional genes have been implicated in the pathogenesis and biology of Wilms tumor:

  • 16q and 1p: Additional tumor-suppressor or tumor-progressive genes may lie on chromosomes 16q and 1p as evidenced by loss of heterozygosity for these regions in 17% and 11% of Wilms tumors, respectively. Patients classified by tumor-specific loss of these loci had significantly worse relapse-free and OS rates. Combined loss of 1p and 16q are used to select favorable-histology Wilms tumor patients for more aggressive therapy in the current Children's Oncology Group study.[53]
  • CACNA1E: Overexpression and amplification of the gene CACNA1E located at 1q25.3, which encodes the ion-conducting alpha-1 subunit of R-type voltage-dependent calcium channels, may be associated with relapse in favorable-histology Wilms tumor.[54]
  • 7p21: A consensus region of loss of heterozygosity has been identified within 7p21 containing ten known genes, including two candidate suppressor genes (Mesenchyme homeobox 2 [MEOX2] and Sclerostin domain containing 1 [SOSTDC1]).[55]
  • SKCG-1: Genomic loss of a growth regulatory gene, SKCG-1, located at 11q23.2, was found in 38% of examined sporadic Wilms tumors and particularly the highly proliferative Wilms tumors. Additional studies of si-RNA silencing of the SKCG-1 gene in human embryonic kidney epithelial cells resulted in a 40% increase in cell growth, which suggests that this gene may be involved in loss of growth regulation and Wilms tumorigenesis.[56]
  • p53 tumor suppressor gene: A small subset of anaplastic Wilms tumors show mutations in the p53 tumor suppressor gene. Although it is unlikely that it plays a major role in Wilms tumorigenesis, it may be useful as an unfavorable prognostic marker.[57,58]
  • FBXW7: FBXW7, a ubiquitin ligase component, has been identified as a novel Wilms tumor gene. Mutations of this gene have been associated with epithelial-type tumor histology.[59]
  • MYCN: Genomic gain or amplification of MYCN is relatively common in Wilms tumors and associated with diffuse anaplastic histology.[59]
1|2|3|4|5|6

WebMD Public Information from the National Cancer Institute

Last Updated: February 25, 2014
This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.
Next Article:

Today on WebMD

Building a Support System
Blog
cancer fighting foods
SLIDESHOW
 
precancerous lesions slideshow
SLIDESHOW
quit smoking tips
SLIDESHOW
 
Jennifer Goodman Linn self-portrait
Blog
what is your cancer risk
HEALTH CHECK
 
colorectal cancer treatment advances
Video
breast cancer overview slideshow
SLIDESHOW
 
prostate cancer overview
SLIDESHOW
lung cancer overview slideshow
SLIDESHOW
 
ovarian cancer overview slideshow
SLIDESHOW
Actor Michael Douglas
Article