Skip to content
My WebMD Sign In, Sign Up

Cancer Health Center

Font Size

Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies Treatment (PDQ®): Treatment - Health Professional Information [NCI] - Treatment of Newly Diagnosed AML

continued...

Central Nervous System (CNS) Prophylaxis for AML

Although the presence of CNS leukemia at diagnosis (i.e., clinical neurologic features and/or leukemic cells in cerebral spinal fluid on cytocentrifuge preparation) is more common in childhood AML than in childhood acute lymphoblastic leukemia (ALL), survival is not adversely affected.[20] This finding is perhaps related to both the higher doses of chemotherapy used in AML (with potential crossover to the CNS) and the fact that marrow disease has not yet been as effectively brought under long-term control in AML as in ALL. Children with M4 and M5 AML have the highest incidence of CNS leukemia (especially those with inv(16) or 11q23 chromosomal abnormalities). The use of some form of intrathecal chemotherapy as CNS-directed treatment is now incorporated into most protocols for the treatment of childhood AML and is considered a standard part of the treatment for AML.[21] Cranial radiation is no longer routinely employed in the treatment of children with AML.[22]

Granulocytic Sarcoma/Chloroma

Granulocytic sarcoma (chloroma) describes extramedullary collections of leukemia cells. These collections can occur, albeit rarely, as the sole evidence of leukemia. In a review of three AML studies conducted by the former CCG, fewer than 1% of patients had isolated granulocytic sarcoma, and 11% had granulocytic sarcoma along with marrow disease at the time of diagnosis.[23] Importantly, the patient who presents with an isolated tumor, without evidence of marrow involvement, must be treated as if there is systemic disease. Patients with isolated granulocytic sarcoma have a good prognosis if treated with current AML therapy.

Patients with marrow disease and extramedullary disease limited to the skin do worse than those without granulocytic sarcoma. In one study, AML patients with orbital granulocytic sarcoma and CNS granulocytic sarcoma appeared to have a better survival than patients with marrow disease and granulocytic sarcoma at other sites and AML patients without any extramedullary disease.[24] The majority of patients with orbital granulocytic sarcoma have a t(8;21) abnormality, which has been associated with a favorable prognosis. The use of radiation therapy does not improve survival in patients with granulocytic sarcoma who have a complete response to chemotherapy, but may be necessary if the site(s) of granulocytic sarcoma do not show complete response to chemotherapy or for disease that recurs locally.[23]

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with untreated childhood acute myeloid leukemia and other myeloid malignancies. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

References:

  1. Ries LAG, Melbert D, Krapcho M, et al.: SEER Cancer Statistics Review, 1975-2005. Bethesda, Md: National Cancer Institute, 2007. Also available online. Last accessed April 04, 2013.
  2. Gibson BE, Wheatley K, Hann IM, et al.: Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia 19 (12): 2130-8, 2005.
  3. Lange BJ, Smith FO, Feusner J, et al.: Outcomes in CCG-2961, a children's oncology group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the children's oncology group. Blood 111 (3): 1044-53, 2008.
  4. Creutzig U, Büchner T, Sauerland MC, et al.: Significance of age in acute myeloid leukemia patients younger than 30 years: a common analysis of the pediatric trials AML-BFM 93/98 and the adult trials AMLCG 92/99 and AMLSG HD93/98A. Cancer 112 (3): 562-71, 2008.
  5. Kaspers GJ, Creutzig U: Pediatric acute myeloid leukemia: international progress and future directions. Leukemia 19 (12): 2025-9, 2005.
  6. Stevens RF, Hann IM, Wheatley K, et al.: Marked improvements in outcome with chemotherapy alone in paediatric acute myeloid leukemia: results of the United Kingdom Medical Research Council's 10th AML trial. MRC Childhood Leukaemia Working Party. Br J Haematol 101 (1): 130-40, 1998.
  7. Creutzig U, Ritter J, Zimmermann M, et al.: Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of Study Acute Myeloid Leukemia-Berlin-Frankfurt-Münster 93. J Clin Oncol 19 (10): 2705-13, 2001.
  8. Hann IM, Stevens RF, Goldstone AH, et al.: Randomized comparison of DAT versus ADE as induction chemotherapy in children and younger adults with acute myeloid leukemia. Results of the Medical Research Council's 10th AML trial (MRC AML10). Adult and Childhood Leukaemia Working Parties of the Medical Research Council. Blood 89 (7): 2311-8, 1997.
  9. Creutzig U, Ritter J, Zimmermann M, et al.: Idarubicin improves blast cell clearance during induction therapy in children with AML: results of study AML-BFM 93. AML-BFM Study Group. Leukemia 15 (3): 348-54, 2001.
  10. Gibson BE, Webb DK, Howman AJ, et al.: Results of a randomized trial in children with Acute Myeloid Leukaemia: medical research council AML12 trial. Br J Haematol 155 (3): 366-76, 2011.
  11. Burnett AK, Hills RK, Milligan DW, et al.: Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: results of the MRC AML12 trial. J Clin Oncol 28 (4): 586-95, 2010.
  12. Weick JK, Kopecky KJ, Appelbaum FR, et al.: A randomized investigation of high-dose versus standard-dose cytosine arabinoside with daunorubicin in patients with previously untreated acute myeloid leukemia: a Southwest Oncology Group study. Blood 88 (8): 2841-51, 1996.
  13. Bishop JF, Matthews JP, Young GA, et al.: A randomized study of high-dose cytarabine in induction in acute myeloid leukemia. Blood 87 (5): 1710-7, 1996.
  14. Becton D, Dahl GV, Ravindranath Y, et al.: Randomized use of cyclosporin A (CsA) to modulate P-glycoprotein in children with AML in remission: Pediatric Oncology Group Study 9421. Blood 107 (4): 1315-24, 2006.
  15. Rubnitz JE, Inaba H, Dahl G, et al.: Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol 11 (6): 543-52, 2010.
  16. Ozer H, Armitage JO, Bennett CL, et al.: 2000 update of recommendations for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines. American Society of Clinical Oncology Growth Factors Expert Panel. J Clin Oncol 18 (20): 3558-85, 2000.
  17. Creutzig U, Zimmermann M, Lehrnbecher T, et al.: Less toxicity by optimizing chemotherapy, but not by addition of granulocyte colony-stimulating factor in children and adolescents with acute myeloid leukemia: results of AML-BFM 98. J Clin Oncol 24 (27): 4499-506, 2006.
  18. Lehrnbecher T, Zimmermann M, Reinhardt D, et al.: Prophylactic human granulocyte colony-stimulating factor after induction therapy in pediatric acute myeloid leukemia. Blood 109 (3): 936-43, 2007.
  19. Ehlers S, Herbst C, Zimmermann M, et al.: Granulocyte colony-stimulating factor (G-CSF) treatment of childhood acute myeloid leukemias that overexpress the differentiation-defective G-CSF receptor isoform IV is associated with a higher incidence of relapse. J Clin Oncol 28 (15): 2591-7, 2010.
  20. Johnston DL, Alonzo TA, Gerbing RB, et al.: The presence of central nervous system disease at diagnosis in pediatric acute myeloid leukemia does not affect survival: a Children's Oncology Group study. Pediatr Blood Cancer 55 (3): 414-20, 2010.
  21. Pui CH, Dahl GV, Kalwinsky DK, et al.: Central nervous system leukemia in children with acute nonlymphoblastic leukemia. Blood 66 (5): 1062-7, 1985.
  22. Creutzig U, Zimmermann M, Bourquin JP, et al.: CNS irradiation in pediatric acute myleoid leukemia: equal results by 12 or 18 Gy in studies AML-BFM98 and 2004. Pediatr Blood Cancer 57 (6): 986-92, 2011.
  23. Dusenbery KE, Howells WB, Arthur DC, et al.: Extramedullary leukemia in children with newly diagnosed acute myeloid leukemia: a report from the Children's Cancer Group. J Pediatr Hematol Oncol 25 (10): 760-8, 2003.
  24. Johnston DL, Alonzo TA, Gerbing RB, et al.: Superior outcome of pediatric acute myeloid leukemia patients with orbital and CNS myeloid sarcoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 58 (4): 519-24, 2012.
1|2|3
1|2|3

WebMD Public Information from the National Cancer Institute

Last Updated: February 25, 2014
This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.
Next Article:

Today on WebMD

Building a Support System
Blog
cancer fighting foods
SLIDESHOW
 
precancerous lesions slideshow
SLIDESHOW
quit smoking tips
SLIDESHOW
 
Jennifer Goodman Linn self-portrait
Blog
what is your cancer risk
HEALTH CHECK
 
colorectal cancer treatment advances
Video
breast cancer overview slideshow
SLIDESHOW
 
prostate cancer overview
SLIDESHOW
lung cancer overview slideshow
SLIDESHOW
 
ovarian cancer overview slideshow
SLIDESHOW
Actor Michael Douglas
Article