Find Information About:

Drugs & Supplements

Get information and reviews on prescription drugs, over-the-counter medications, vitamins, and supplements. Search by name or medical condition.

Pill Identifier

Pill Identifier

Having trouble identifying your pills?

Enter the shape, color, or imprint of your prescription or OTC drug. Our pill identification tool will display pictures that you can compare to your pill.

Get Started

My Medicine

Save your medicine, check interactions, sign up for FDA alerts, create family profiles and more.

Get Started

WebMD Health Experts and Community

Talk to health experts and other people like you in WebMD's Communities. It's a safe forum where you can create or participate in support groups and discussions about health topics that interest you.

  • Second Opinion

    Second Opinion

    Read expert perspectives on popular health topics.

  • Community


    Connect with people like you, and get expert guidance on living a healthy life.

Got a health question? Get answers provided by leading organizations, doctors, and experts.

Get Answers

Sign up to receive WebMD's award-winning content delivered to your inbox.

Sign Up

Font Size

Will 3-D Printing Revolutionize Medicine?

Implantable Devices

3-D-printed plastics and metals have also made their way inside the body. Doctors at University of Michigan’s Mott Children’s Hospital have saved the lives of two babies since 2012 by implanting 3-D-printed plastic splints into their windpipes.

The babies had a rare birth defect called tracheobronchomalacia. Without treatment, their weak airways would collapse, suffocating them. The only treatment is to insert a tracheostomy tube and put the baby on a ventilator for up to several years until, hopefully, the airways become strong enough to stay open on their own.

But 17-month-old Garrett Peterson’s airways weren’t showing any signs of getting stronger while on the ventilator. Doctors in Utah, where the Petersons live, said they had done all they could.

“Everything had to be perfect in the world. Garrett couldn’t cry, or he’d turn blue. He couldn’t poop, or he’d turn blue,” says his father, Jake Peterson. “We just had to hold him and keep him perfectly happy, so it wasn’t realistic to keep him on the ventilator.”

The Petersons had read an article about a similar baby helped at the university in 2012 with a 3-D-printed tracheal splint, and they sought the help of Mott surgeon Glenn Green, MD.

“We decided this was Garrett’s only chance. The hospital here in Utah said to enjoy him for the rest of the time we had him. And we weren’t ready to do that,” says Natalie Peterson, Garrett’s mother.

Based on CT scans of Garrett’s airways, Green and biomedical engineering professor Hollister designed and printed custom-fit splints to hold Garrett’s airways open. His body will eventually absorb the device, and the airways will stay open on their own. Mott Children’s Hospital says it was the first facility in the world to perform this procedure.

“I think it was the first example of using a 3-D-printed device in a life-or-death situation,” says Hollister, referring to the baby helped in 2012.

Costs for a tracheostomy and extended time on a ventilator exceed $1 million per patient. The splint totaled $200,000 to $300,000, says Hollister.

Font Size