Skip to content

Cancer Health Center

Font Size

Milk Thistle (PDQ®): Complementary and alternative medicine - Health Professional Information [NCI] - Laboratory / Animal / Preclinical Studies


In prostate cancer cell lines, silybin has been shown to inhibit growth factors and stimulate cell growth,[1,2,3,5] promote cell cycle arrest,[1,4] and inhibit antiapoptotic activity.[53] In rats with azoxymethane -induced colon cancer, dietary silymarin resulted in a reduction in the incidence and multiplicity of adenocarcinoma of the colon in a dose-dependent manner.[25,26] Dietary silymarin had no effect on small intestinal adenocarcinoma,[26] but exerted a preventive effect in mice with N-butyl-N-(4-hydroxybutyl) nitrosamine –induced bladder cancer [24] and in F344 rats with 4-nitroquinoline 1-oxide –induced cancer of the tongue.[17] Dietary silybin administered to nude mice with prostate carcinoma increased production of insulin -like growth factor-binding protein-3 in the plasma of mice and significantly inhibited tumor volume (P < .05).[2] Silibinin administered twice daily reduced the growth of colorectal tumor xenografts in mice for a period of 6 weeks.[58,59]


  1. Zi X, Agarwal R: Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: implications for prostate cancer intervention. Proc Natl Acad Sci U S A 96 (13): 7490-5, 1999.
  2. Singh RP, Dhanalakshmi S, Tyagi AK, et al.: Dietary feeding of silibinin inhibits advance human prostate carcinoma growth in athymic nude mice and increases plasma insulin-like growth factor-binding protein-3 levels. Cancer Res 62 (11): 3063-9, 2002.
  3. Zi X, Zhang J, Agarwal R, et al.: Silibinin up-regulates insulin-like growth factor-binding protein 3 expression and inhibits proliferation of androgen-independent prostate cancer cells. Cancer Res 60 (20): 5617-20, 2000.
  4. Zi X, Grasso AW, Kung HJ, et al.: A flavonoid antioxidant, silymarin, inhibits activation of erbB1 signaling and induces cyclin-dependent kinase inhibitors, G1 arrest, and anticarcinogenic effects in human prostate carcinoma DU145 cells. Cancer Res 58 (9): 1920-9, 1998.
  5. Sharma Y, Agarwal C, Singh AK, et al.: Inhibitory effect of silibinin on ligand binding to erbB1 and associated mitogenic signaling, growth, and DNA synthesis in advanced human prostate carcinoma cells. Mol Carcinog 30 (4): 224-36, 2001.
  6. Flaig TW, Glodé M, Gustafson D, et al.: A study of high-dose oral silybin-phytosome followed by prostatectomy in patients with localized prostate cancer. Prostate 70 (8): 848-55, 2010.
  7. Bhatia N, Zhao J, Wolf DM, et al.: Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: comparison with silymarin. Cancer Lett 147 (1-2): 77-84, 1999.
  8. Jiang C, Agarwal R, Lü J: Anti-angiogenic potential of a cancer chemopreventive flavonoid antioxidant, silymarin: inhibition of key attributes of vascular endothelial cells and angiogenic cytokine secretion by cancer epithelial cells. Biochem Biophys Res Commun 276 (1): 371-8, 2000.
  9. Zi X, Feyes DK, Agarwal R: Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins. Clin Cancer Res 4 (4): 1055-64, 1998.
  10. Saliou C, Rihn B, Cillard J, et al.: Selective inhibition of NF-kappaB activation by the flavonoid hepatoprotector silymarin in HepG2. Evidence for different activating pathways. FEBS Lett 440 (1-2): 8-12, 1998.
  11. Shear NH, Malkiewicz IM, Klein D, et al.: Acetaminophen-induced toxicity to human epidermoid cell line A431 and hepatoblastoma cell line Hep G2, in vitro, is diminished by silymarin. Skin Pharmacol 8 (6): 279-91, 1995.
  12. Duthie SJ, Johnson W, Dobson VL: The effect of dietary flavonoids on DNA damage (strand breaks and oxidised pyrimdines) and growth in human cells. Mutat Res 390 (1-2): 141-51, 1997.
  13. Scambia G, De Vincenzo R, Ranelletti FO, et al.: Antiproliferative effect of silybin on gynaecological malignancies: synergism with cisplatin and doxorubicin. Eur J Cancer 32A (5): 877-82, 1996.
  14. Manna SK, Mukhopadhyay A, Van NT, et al.: Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J Immunol 163 (12): 6800-9, 1999.
  15. Kang SN, Lee MH, Kim KM, et al.: Induction of human promyelocytic leukemia HL-60 cell differentiation into monocytes by silibinin: involvement of protein kinase C. Biochem Pharmacol 61 (12): 1487-95, 2001.
  16. Clinton SK: The dietary antioxidant network and prostate carcinoma. Cancer 86 (9): 1629-31, 1999.
  17. Yanaida Y, Kohno H, Yoshida K, et al.: Dietary silymarin suppresses 4-nitroquinoline 1-oxide-induced tongue carcinogenesis in male F344 rats. Carcinogenesis 23 (5): 787-94, 2002.
  18. Agarwal R, Katiyar SK, Lundgren DW, et al.: Inhibitory effect of silymarin, an anti-hepatotoxic flavonoid, on 12-O-tetradecanoylphorbol-13-acetate-induced epidermal ornithine decarboxylase activity and mRNA in SENCAR mice. Carcinogenesis 15 (6): 1099-103, 1994.
  19. Katiyar SK, Korman NJ, Mukhtar H, et al.: Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst 89 (8): 556-66, 1997.
  20. Lahiri-Chatterjee M, Katiyar SK, Mohan RR, et al.: A flavonoid antioxidant, silymarin, affords exceptionally high protection against tumor promotion in the SENCAR mouse skin tumorigenesis model. Cancer Res 59 (3): 622-32, 1999.
  21. Singh RP, Tyagi AK, Zhao J, et al.: Silymarin inhibits growth and causes regression of established skin tumors in SENCAR mice via modulation of mitogen-activated protein kinases and induction of apoptosis. Carcinogenesis 23 (3): 499-510, 2002.
  22. Zhao J, Sharma Y, Agarwal R: Significant inhibition by the flavonoid antioxidant silymarin against 12-O-tetradecanoylphorbol 13-acetate-caused modulation of antioxidant and inflammatory enzymes, and cyclooxygenase 2 and interleukin-1alpha expression in SENCAR mouse epidermis: implications in the prevention of stage I tumor promotion. Mol Carcinog 26 (4): 321-33, 1999.
  23. Zhao J, Lahiri-Chatterjee M, Sharma Y, et al.: Inhibitory effect of a flavonoid antioxidant silymarin on benzoyl peroxide-induced tumor promotion, oxidative stress and inflammatory responses in SENCAR mouse skin. Carcinogenesis 21 (4): 811-6, 2000.
  24. Vinh PQ, Sugie S, Tanaka T, et al.: Chemopreventive effects of a flavonoid antioxidant silymarin on N-butyl-N-(4-hydroxybutyl)nitrosamine-induced urinary bladder carcinogenesis in male ICR mice. Jpn J Cancer Res 93 (1): 42-9, 2002.
  25. Kohno H, Tanaka T, Kawabata K, et al.: Silymarin, a naturally occurring polyphenolic antioxidant flavonoid, inhibits azoxymethane-induced colon carcinogenesis in male F344 rats. Int J Cancer 101 (5): 461-8, 2002.
  26. Gershbein LL: Action of dietary trypsin, pressed coffee oil, silymarin and iron salt on 1,2-dimethylhydrazine tumorigenesis by gavage. Anticancer Res 14 (3A): 1113-6, 1994 May-Jun.
  27. Campos R, Garrido A, Guerra R, et al.: Silybin dihemisuccinate protects against glutathione depletion and lipid peroxidation induced by acetaminophen on rat liver. Planta Med 55 (5): 417-9, 1989.
  28. Farghali H, Kameniková L, Hynie S, et al.: Silymarin effects on intracellular calcuim and cytotoxicity: a study in perfused rat hepatocytes after oxidative stress injury. Pharmacol Res 41 (2): 231-7, 2000.
  29. Lettéron P, Labbe G, Degott C, et al.: Mechanism for the protective effects of silymarin against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity in mice. Evidence that silymarin acts both as an inhibitor of metabolic activation and as a chain-breaking antioxidant. Biochem Pharmacol 39 (12): 2027-34, 1990.
  30. Valenzuela A, Guerra R, Garrido A: Silybin dihemisuccinate protects rat erythrocytes against phenylhydrazine-induced lipid peroxidation and hemolysis. Planta Med 53 (5): 402-5, 1987.
  31. Campos R, Garrido A, Guerra R, et al.: Acetaminophen hepatotoxicity in rats is attenuated by silybin dihemisuccinate. Prog Clin Biol Res 280: 375-8, 1988.
  32. Zuber R, Modrianský M, Dvorák Z, et al.: Effect of silybin and its congeners on human liver microsomal cytochrome P450 activities. Phytother Res 16 (7): 632-8, 2002.
  33. Venkataramanan R, Ramachandran V, Komoroski BJ, et al.: Milk thistle, a herbal supplement, decreases the activity of CYP3A4 and uridine diphosphoglucuronosyl transferase in human hepatocyte cultures. Drug Metab Dispos 28 (11): 1270-3, 2000.
  34. Zhao J, Agarwal R: Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: implications in cancer chemoprevention. Carcinogenesis 20 (11): 2101-8, 1999.
  35. Sonnenbichler J, Mattersberger J, Rosen H: [Stimulation of RNA synthesis in rat liver and isolated hepatocytes by silybin, an antihepatotoxic agent from Silybum marianum L. Gaertn (author's transl)] Hoppe Seylers Z Physiol Chem 357 (8): 1171-80, 1976.
  36. Sonnenbichler J, Zetl I: [Mechanism of action of silibinin. V. Effect of silibinin on the synthesis of ribosomal RNA, mRNA and tRNA in rat liver in vivo] Hoppe Seylers Z Physiol Chem 365 (5): 555-66, 1984.
  37. Sonnenbichler J, Zetl I: Biochemical effects of the flavonolignane silibinin on RNA, protein and DNA synthesis in rat livers. Prog Clin Biol Res 213: 319-31, 1986.
  38. Sonnenbichler J, Goldberg M, Hane L, et al.: Stimulatory effect of Silibinin on the DNA synthesis in partially hepatectomized rat livers: non-response in hepatoma and other malign cell lines. Biochem Pharmacol 35 (3): 538-41, 1986.
  39. Machicao F, Sonnenbichler J: Mechanism of the stimulation of RNA synthesis in rat liver nuclei by silybin. Hoppe Seylers Z Physiol Chem 358 (2): 141-7, 1977.
  40. Dehmlow C, Erhard J, de Groot H: Inhibition of Kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. Hepatology 23 (4): 749-54, 1996.
  41. Valenzuela A, Guerra R, Videla LA: Antioxidant properties of the flavonoids silybin and (+)-cyanidanol-3: comparison with butylated hydroxyanisole and butylated hydroxytoluene. Planta Med (6): 438-40, 1986.
  42. Valenzuela A, Aspillaga M, Vial S, et al.: Selectivity of silymarin on the increase of the glutathione content in different tissues of the rat. Planta Med 55 (5): 420-2, 1989.
  43. Mira ML, Azevedo MS, Manso C: The neutralization of hydroxyl radical by silibin, sorbinil and bendazac. Free Radic Res Commun 4 (2): 125-9, 1987.
  44. Mira L, Silva M, Manso CF: Scavenging of reactive oxygen species by silibinin dihemisuccinate. Biochem Pharmacol 48 (4): 753-9, 1994.
  45. Koch HP, Löffler E: Influence of silymarin and some flavonoids on lipid peroxidation in human platelets. Methods Find Exp Clin Pharmacol 7 (1): 13-8, 1985.
  46. Garrido A, Arancibia C, Campos R, et al.: Acetaminophen does not induce oxidative stress in isolated rat hepatocytes: its probable antioxidant effect is potentiated by the flavonoid silybin. Pharmacol Toxicol 69 (1): 9-12, 1991.
  47. Bosisio E, Benelli C, Pirola O: Effect of the flavanolignans of Silybum marianum L. on lipid peroxidation in rat liver microsomes and freshly isolated hepatocytes. Pharmacol Res 25 (2): 147-54, 1992 Feb-Mar.
  48. Altorjay I, Dalmi L, Sári B, et al.: The effect of silibinin (Legalon) on the the free radical scavenger mechanisms of human erythrocytes in vitro. Acta Physiol Hung 80 (1-4): 375-80, 1992.
  49. Sonnenbichler J, Scalera F, Sonnenbichler I, et al.: Stimulatory effects of silibinin and silicristin from the milk thistle Silybum marianum on kidney cells. J Pharmacol Exp Ther 290 (3): 1375-83, 1999.
  50. Gaedeke J, Fels LM, Bokemeyer C, et al.: Cisplatin nephrotoxicity and protection by silibinin. Nephrol Dial Transplant 11 (1): 55-62, 1996.
  51. Bokemeyer C, Fels LM, Dunn T, et al.: Silibinin protects against cisplatin-induced nephrotoxicity without compromising cisplatin or ifosfamide anti-tumour activity. Br J Cancer 74 (12): 2036-41, 1996.
  52. Giacomelli S, Gallo D, Apollonio P, et al.: Silybin and its bioavailable phospholipid complex (IdB 1016) potentiate in vitro and in vivo the activity of cisplatin. Life Sci 70 (12): 1447-59, 2002.
  53. Dhanalakshmi S, Singh RP, Agarwal C, et al.: Silibinin inhibits constitutive and TNFalpha-induced activation of NF-kappaB and sensitizes human prostate carcinoma DU145 cells to TNFalpha-induced apoptosis. Oncogene 21 (11): 1759-67, 2002.
  54. Zi X, Agarwal R: Modulation of mitogen-activated protein kinase activation and cell cycle regulators by the potent skin cancer preventive agent silymarin. Biochem Biophys Res Commun 263 (2): 528-36, 1999.
  55. Ahmad N, Gali H, Javed S, et al.: Skin cancer chemopreventive effects of a flavonoid antioxidant silymarin are mediated via impairment of receptor tyrosine kinase signaling and perturbation in cell cycle progression. Biochem Biophys Res Commun 247 (2): 294-301, 1998.
  56. Zi X, Mukhtar H, Agarwal R: Novel cancer chemopreventive effects of a flavonoid antioxidant silymarin: inhibition of mRNA expression of an endogenous tumor promoter TNF alpha. Biochem Biophys Res Commun 239 (1): 334-9, 1997.
  57. Singh RP, Agarwal R: Flavonoid antioxidant silymarin and skin cancer. Antioxid Redox Signal 4 (4): 655-63, 2002.
  58. Kaur M, Velmurugan B, Tyagi A, et al.: Silibinin suppresses growth and induces apoptotic death of human colorectal carcinoma LoVo cells in culture and tumor xenograft. Mol Cancer Ther 8 (8): 2366-74, 2009.
  59. Velmurugan B, Gangar SC, Kaur M, et al.: Silibinin exerts sustained growth suppressive effect against human colon carcinoma SW480 xenograft by targeting multiple signaling molecules. Pharm Res 27 (10): 2085-97, 2010.

WebMD Public Information from the National Cancer Institute

Last Updated: September 04, 2014
This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.
Next Article:

Today on WebMD

Colorectal cancer cells
A common one in both men and women.
Lung cancer xray
See it in pictures, plus read the facts.
sauteed cherry tomatoes
Fight cancer one plate at a time.
Ovarian cancer illustration
Do you know the symptoms?
Jennifer Goodman Linn self-portrait
what is your cancer risk
colorectal cancer treatment advances
breast cancer overview slideshow
prostate cancer overview
lung cancer overview slideshow
ovarian cancer overview slideshow
Actor Michael Douglas