SALACIA

OTHER NAME(S):

Chundan, Kathala Hibutu Tea, Ponkoranti, SO, S. oblonga, Salacia oblonga, Salacia reticulata.<br/><br/>

Overview

Overview Information

Salacia is an herb that is native to India and Sri Lanka. The root and stem are used to make medicine.

Salacia has a long history of use as a treatment for diabetes in Ayurveda, traditional Indian medicine. Mugs made from salacia wood are used by people with diabetes to drink water.

In addition to treating diabetes, salacia is used for treating gonorrhea, asthma, itchiness, joint pain (rheumatism), obesity, thirst, and menstrual problems.

How does it work?

Chemicals in salacia seem to prevent sugars in food from being absorbed by the body.

Uses

Uses & Effectiveness?

Possibly Effective for

  • Diabetes. Early research suggests that consuming salacia tea with each meal might lower hemoglobin A1C (HbA1C) levels in people with type 2 diabetes. HbA1C is a measure of blood sugar control. A single dose of salacia, in combination with a meal, also seems to reduce after-meal insulin levels and reduce after-meal blood sugar in healthy volunteers and in people with type 2 diabetes. These reductions indicate better blood sugar control. Other early research suggests that taking salacia with food for 6 weeks seems to reduce pre-meal blood sugar and HbA1C levels in patients with type 2 diabetes.

Insufficient Evidence for

More evidence is needed to rate the effectiveness of salacia for these uses.

Side Effects

Side Effects & Safety

Salacia is POSSIBLY SAFE when taken by mouth, short-term. Single doses of salacia can be consumed safely in doses up to 1000 mg. Consuming salacia tea with food seems to be safe for most people for up to three months. There isn't enough information to know if salacia is safe when used for long periods of time.

Salacia can cause uncomfortable side effects such as gas, belching, pain in the abdomen, nausea, and diarrhea in some people.

Special Precautions & Warnings:

Pregnancy and breast-feeding: There is not enough reliable information about the safety of taking salacia if you are pregnant or breast-feeding. Stay on the safe side and avoid use.

Diabetes: Salacia can decrease blood sugar levels. Your diabetes medications might need to be adjusted by your healthcare provider.

Surgery: Salacia might lower blood sugar levels. There is some concern that it might interfere with blood sugar control during and after surgery. Stop using salacia at least 2 weeks before a scheduled surgery.

Interactions

Interactions?

Moderate Interaction

Be cautious with this combination

!
  • Medications for diabetes (Antidiabetes drugs) interacts with SALACIA

    Salacia might decrease blood sugar. Diabetes medications are also used to lower blood sugar. Taking salacia along with diabetes medications might cause your blood sugar to go too low. Monitor your blood sugar closely. The dose of your diabetes medication might need to be changed.<br><nb>Some medications used for diabetes include glimepiride (Amaryl), glyburide (DiaBeta, Glynase PresTab, Micronase), insulin, pioglitazone (Actos), rosiglitazone (Avandia), chlorpropamide (Diabinese), glipizide (Glucotrol), tolbutamide (Orinase), and others.

Dosing

Dosing

The appropriate dose of salacia depends on several factors such as the user's age, health, and several other conditions. At this time there is not enough scientific information to determine an appropriate range of doses for salacia. Keep in mind that natural products are not always necessarily safe and dosages can be important. Be sure to follow relevant directions on product labels and consult your pharmacist or physician or other healthcare professional before using.

View References

REFERENCES:

  • Akase, T., Shimada, T., Harasawa, Y., Akase, T., Ikeya, Y., Nagai, E., Iizuka, S., Nakagami, G., Iizaka, S., Sanada, H., and Aburada, M. Preventive Effects of View abstract.
  • Arra, G. S., Arutla, S., and Krishna, D. R. Transdermal delivery of isosorbide 5-mononitrate from a new membrane reservoir and matrix-type patches. Drug Dev.Ind.Pharm 1998;24(5):489-492. View abstract.
  • Augusti, K. T., Joseph, P., and Babu, T. D. Biologically active principles isolated from View abstract.
  • Benalla, W., Bellahcen, S., and Bnouham, M. Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors. Curr.Diabetes Rev. 7-1-2010;6(4):247-254. View abstract.
  • Bhat, R. G., Kumar, N. S., and Pinto, B. M. Synthesis of phosphate derivatives related to the glycosidase inhibitor salacinol. Carbohydr.Res. 9-3-2007;342(12-13):1934-1942. View abstract.
  • Chen, W. and Pinto, B. M. Synthesis of aza- and thia-spiroheterocycles and attempted synthesis of spiro sulfonium compounds related to salacinol. Carbohydr.Res. 11-5-2007;342(15):2163-2172. View abstract.
  • Chen, W., Kuntz, D. A., Hamlet, T., Sim, L., Rose, D. R., and Mario, Pinto B. Synthesis, enzymatic activity, and X-ray crystallography of an unusual class of amino acids. Bioorg.Med Chem. 12-15-2006;14(24):8332-8340. View abstract.
  • Chen, W., Sim, L., Rose, D. R., and Pinto, B. M. Synthesis of analogues of salacinol containing a carboxylate inner salt and their inhibitory activities against human maltase glucoamylase. Carbohydr.Res. 9-3-2007;342(12-13):1661-1667. View abstract.
  • Choubdar, N. and Pinto, B. M. Attempted synthesis of 2-acetamido and 2-amino derivatives of salacinol. Ring opening reactions. J Org.Chem. 6-9-2006;71(12):4671-4674. View abstract.
  • Choubdar, N., Bhat, R. G., Stubbs, K. A., Yuzwa, S., and Pinto, B. M. Synthesis of 2-amido, 2-amino, and 2-azido derivatives of the nitrogen analogue of the naturally occurring glycosidase inhibitor salacinol and their inhibitory activities against O-GlcNAcase and NagZ enzymes. Carbohydr.Res. 7-21-2008;343(10-11):1766-1777. View abstract.
  • Choubdar, N., Sim, L., Rose, D. R., and Pinto, B. M. Synthesis of 2-deoxy-2-fluoro and 1,2-ene derivatives of the naturally occurring glycosidase inhibitor, salacinol, and their inhibitory activities against recombinant human maltase glucoamylase. Carbohydr.Res. 4-7-2008;343(5):951-956. View abstract.
  • Duarte, L. P., Silva de Miranda, R. R., Rodrigues, S. B., de Fatima Silva, G. D., Vieira Filho, S. A., and Knupp, V. F. Stereochemistry of 16a-hydroxyfriedelin and 3-Oxo-16-methylfriedel-16-ene established by 2D NMR spectroscopy. Molecules. 2009;14(2):598-607. View abstract.
  • Eskandari, R., Jayakanthan, K., Kuntz, D. A., Rose, D. R., and Pinto, B. M. Synthesis of a biologically active isomer of kotalanol, a naturally occurring glucosidase inhibitor. Bioorg.Med Chem. 4-15-2010;18(8):2829-2835. View abstract.
  • Eskandari, R., Jones, K., Rose, D. R., and Pinto, B. M. Probing the active-site requirements of human intestinal N-terminal maltase glucoamylase: the effect of replacing the sulfate moiety by a methyl ether in ponkoranol, a naturally occurring alpha-glucosidase inhibitor. Bioorg.Med Chem.Lett. 10-1-2010;20(19):5686-5689. View abstract.
  • Eskandari, R., Kuntz, D. A., Rose, D. R., and Pinto, B. M. Potent glucosidase inhibitors: de-O-sulfonated ponkoranol and its stereoisomer. Org.Lett. 4-2-2010;12(7):1632-1635. View abstract.
  • Figueiredo, J. N., Raz, B., and Sequin, U. Novel quinone methides from View abstract.
  • Gallienne, E., Gefflaut, T., Bolte, J., and Lemaire, M. Synthesis of new nitrogen analogues of salacinol and deoxynojirimycin and their evaluation as glycosidase inhibitors. J Org.Chem. 2-3-2006;71(3):894-902. View abstract.
  • Gao, H. Y., Guo, Z. H., Cheng, P., Xu, X. M., and Wu, L. J. New triterpenes from View abstract.
  • Gessler, M. C., Nkunya, M. H., Mwasumbi, L. B., Heinrich, M., and Tanner, M. Screening Tanzanian medicinal plants for antimalarial activity. Acta Trop. 1994;56(1):65-77. View abstract.
  • Ghavami, A., Chen, J. J., and Mario, Pinto B. Synthesis of a novel class of sulfonium ions as potential inhibitors of UDP-galactopyranose mutase. Carbohydr.Res. 1-22-2004;339(2):401-407. View abstract.
  • Ghavami, A., Johnston, B. D., and Pinto, B. M. A new class of glycosidase inhibitor: synthesis of salacinol and its stereoisomers. J Org.Chem. 4-6-2001;66(7):2312-2317. View abstract.
  • Ghavami, A., Johnston, B. D., Jensen, M. T., Svensson, B., and Pinto, B. M. Synthesis of nitrogen analogues of salacinol and their evaluation as glycosidase inhibitors. J Am.Chem.Soc. 7-4-2001;123(26):6268-6271. View abstract.
  • Ghavami, A., Johnston, B., and Maddess, M. Synthesis of 1,4-anhydro-D-xylitol heteroanalogues of the naturally occurring glycosidase inhibitor salacinol and their evaluation as glycosidase inhibitors. Canadian Journal of Chemistry 2002;80(8):937-942.
  • Giron, M. D., Sevillano, N., Salto, R., Haidour, A., Manzano, M., Jimenez, M. L., Rueda, R., and Lopez-Pedrosa, J. M. View abstract.
  • Guo, Z. H., Xi, R. G., Wang, X. B., Wu, L. J., and Gao, H. Y. [A new trincallane derivative from View abstract.
  • He, L., Qi, Y., Rong, X., Jiang, J., Yang, Q., Yamahara, J., Murray, M., and Li, Y. The Ayurvedic medicine View abstract.
  • Jayakanthan, K., Mohan, S., and Pinto, B. M. Structure proof and synthesis of kotalanol and de-O-sulfonated kotalanol, glycosidase inhibitors isolated from an herbal remedy for the treatment of type-2 diabetes. J Am.Chem.Soc. 4-22-2009;131(15):5621-5626. View abstract.
  • Johnson, M. A., Jensen, M. T., Svensson, B., and Pinto, B. M. Selection of a high-energy bioactive conformation of a sulfonium-ion glycosidase inhibitor by the enzyme glucoamylase G2. J Am.Chem.Soc. 5-14-2003;125(19):5663-5670. View abstract.
  • Johnston, B. D., Ghavami, A., Jensen, M. T., Svensson, B., and Pinto, B. M. Synthesis of selenium analogues of the naturally occurring glycosidase inhibitor salacinol and their evaluation as glycosidase inhibitors. J Am.Chem.Soc. 7-17-2002;124(28):8245-8250. View abstract.
  • Johnston, B. D., Jensen, H. H., and Pinto, B. M. Synthesis of sulfonium sulfate analogues of disaccharides and their conversion to chain-extended homologues of salacinol: new glycosidase inhibitors. J Org.Chem. 2-3-2006;71(3):1111-1118. View abstract.
  • Karunanayake, E. H. and Sirimanne, S. R. Mangiferin from the root bark of View abstract.
  • Karunanayake, E. H., Welihinda, J., Sirimanne, S. R., and Sinnadorai, G. Oral hypoglycaemic activity of some medicinal plants of Sri Lanka. J Ethnopharmacol. 1984;11(2):223-231. View abstract.
  • Krishnakumar, K., Augusti, K. T., and Vijayammal, P. L. Anti-peroxidative and hypoglycaemic activity of View abstract.
  • Krishnan, V. and Rangaswami, S. Proanthocyanidins of View abstract.
  • Kumar, N. S. and Pinto, B. M. Synthesis of D-lyxitol and D-ribitol analogues of the naturally occurring glycosidase inhibitor salacinol. Carbohydr.Res. 12-12-2005;340(17):2612-2619. View abstract.
  • Liu, H. and Pinto, B. M. Efficient synthesis of the glucosidase inhibitor blintol, the selenium analogue of the naturally occurring glycosidase inhibitor salacinol. J Org.Chem. 1-21-2005;70(2):753-755. View abstract.
  • Liu, H., Nasi, R., Jayakanthan, K., Sim, L., Heipel, H., Rose, D. R., and Pinto, B. M. New synthetic routes to chain-extended selenium, sulfur, and nitrogen analogues of the naturally occurring glucosidase inhibitor salacinol and their inhibitory activities against recombinant human maltase glucoamylase. J Org.Chem. 8-17-2007;72(17):6562-6572. View abstract.
  • Liu, H., Sim, L., Rose, D. R., and Pinto, B. M. A new class of glucosidase inhibitor: analogues of the naturally occurring glucosidase inhibitor salacinol with different ring heteroatom substituents and acyclic chain extension. J Org.Chem. 4-14-2006;71(8):3007-3013. View abstract.
  • Matsuura, T., Yoshikawa, Y., Masui, H., and Sano, M. [Suppression of glucose absorption by various health teas in rats]. Yakugaku Zasshi 2004;124(4):217-223. View abstract.
  • Minami, Y., Kuriyama, C., Ikeda, K., Kato, A., Takebayashi, K., Adachi, I., Fleet, G. W., Kettawan, A., Okamoto, T., and Asano, N. Effect of five-membered sugar mimics on mammalian glycogen-degrading enzymes and various glucosidases. Bioorg.Med Chem. 3-15-2008;16(6):2734-2740. View abstract.
  • Mohan, S. and Pinto, B. M. Towards the elusive structure of kotalanol, a naturally occurring glucosidase inhibitor. Nat.Prod.Rep. 4-24-2010;27(4):481-488. View abstract.
  • Mohan, S. and Pinto, B. M. Zwitterionic glycosidase inhibitors: salacinol and related analogues. Carbohydr.Res. 9-3-2007;342(12-13):1551-1580. View abstract.
  • Mohan, S., Jayakanthan, K., Nasi, R., Kuntz, D. A., Rose, D. R., and Pinto, B. M. Synthesis and biological evaluation of heteroanalogues of kotalanol and de-O-sulfonated kotalanol. Org.Lett. 3-5-2010;12(5):1088-1091. View abstract.
  • Muraoka, O., Morikawa, T., Miyake, S., Akaki, J., Ninomiya, K., and Yoshikawa, M. Quantitative determination of potent alpha-glucosidase inhibitors, salacinol and kotalanol, in View abstract.
  • Muraoka, O., Ying, S., Yoshikai, K., Matsuura, Y., Yamada, E., Minematsu, T., Tanabe, G., Matsuda, H., and Yoshikawa, M. Synthesis of a nitrogen analogue of salacinol and its alpha-glucosidase inhibitory activity. Chem.Pharm Bull.(Tokyo) 2001;49(11):1503-1505. View abstract.
  • Muraoka, O., Yoshikai, K., Takahashi, H., Minematsu, T., Lu, G., Tanabe, G., Wang, T., Matsuda, H., and Yoshikawa, M. Synthesis and biological evaluation of deoxy salacinols, the role of polar substituents in the side chain on the alpha-glucosidase inhibitory activity. Bioorg.Med Chem. 1-15-2006;14(2):500-509. View abstract.
  • Nakamura, S., Takahira, K., Tanabe, G., Morikawa, T., Sakano, M., Ninomiya, K., Yoshikawa, M., Muraoka, O., and Nakanishi, I. Docking and SAR studies of salacinol derivatives as alpha-glucosidase inhibitors. Bioorg.Med Chem.Lett. 8-1-2010;20(15):4420-4423. View abstract.
  • Nasi, R. and Pinto, B. M. Synthesis of new analogues of salacinol containing a pendant hydroxymethyl group as potential glycosidase inhibitors. Carbohydr.Res. 10-16-2006;341(14):2305-2311. View abstract.
  • Nasi, R., Sim, L., Rose, D. R., and Pinto, B. M. New chain-extended analogues of salacinol and blintol and their glycosidase inhibitory activities. Mapping the active-site requirements of human maltase glucoamylase. J Org.Chem. 1-5-2007;72(1):180-186. View abstract.
  • Nasi, R., Sim, L., Rose, D. R., and Pinto, B. M. Synthesis and glycosidase inhibitory activities of chain-modified analogues of the glycosidase inhibitors salacinol and blintol. Carbohydr.Res. 9-3-2007;342(12-13):1888-1894. View abstract.
  • Pillai, N. R., Seshadri, C., and Santhakumari, G. Hypoglycaemic activity of the root bark of View abstract.
  • Rossi, E. J., Sim, L., Kuntz, D. A., Hahn, D., Johnston, B. D., Ghavami, A., Szczepina, M. G., Kumar, N. S., Sterchi, E. E., Nichols, B. L., Pinto, B. M., and Rose, D. R. Inhibition of recombinant human maltase glucoamylase by salacinol and derivatives. FEBS J 2006;273(12):2673-2683. View abstract.
  • Sabu, M. and Kuttan, R. Antioxidant activity of Indian herbal drugs in rats with aloxan-induced diabetes. Pharmaceutical Biology 2003;41:500-505.
  • Samy, R. P. Antimicrobial activity of some medicinal plants from India. Fitoterapia 2005;76(7-8):697-699. View abstract.
  • Sekiguchi, Y., Mano, H., Nakatani, S., Shimizu, J., and Wada, M. Effects of the Sri Lankan medicinal plant, View abstract.
  • Setzer, W. N., Setzer, M. C., Hopper, A. L., Moriarity, D. M., Lehrman, G. K., Niekamp, K. L., Morcomb, S. M., Bates, R. B., McClure, K. J., Stessman, C. C., and Haber, W. A. The cytotoxic activity of a View abstract.
  • Shao, Y., Osamu, M., Kazuya, Y., Yoshiharu, M., Eriko, Y., Toshie, M., Genzoh, T., Hisashi, M., Masayuki, Y., and You, Q. D. Synthesis of a salacinol analogue and its alpha-glucosidase inhibitory activity. Yao Xue.Xue.Bao. 2006;41(7):647-653. View abstract.
  • Shimada, T., Nagai, E., Harasawa, Y., Akase, T., Aburada, T., Iizuka, S., Miyamoto, K., and Aburada, M. Metabolic disease prevention and suppression of fat accumulation by View abstract.
  • Sim, L., Jayakanthan, K., Mohan, S., Nasi, R., Johnston, B. D., Pinto, B. M., and Rose, D. R. New glucosidase inhibitors from an ayurvedic herbal treatment for type 2 diabetes: structures and inhibition of human intestinal maltase-glucoamylase with compounds from View abstract.
  • Sim, L., Willemsma, C., Mohan, S., Naim, H. Y., Pinto, B. M., and Rose, D. R. Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. J Biol.Chem. 6-4-2010;285(23):17763-17770. View abstract.
  • Sneden, A. T. Isoiguesterin, a new antileukemic bisnortriterpene from View abstract.
  • Szczepina, M. G., Johnston, B. D., Yuan, Y., Svensson, B., and Pinto, B. M. Synthesis of alkylated deoxynojirimycin and 1,5-dideoxy-1,5-iminoxylitol analogues: polar side-chain modification, sulfonium and selenonium heteroatom variants, conformational analysis, and evaluation as glycosidase inhibitors. J Am.Chem.Soc. 10-6-2004;126(39):12458-12469. View abstract.
  • Tanabe, G., Xie, W., Ogawa, A., Cao, C., Minematsu, T., Yoshikawa, M., and Muraoka, O. Facile synthesis of de-O-sulfated salacinols: revision of the structure of neosalacinol, a potent alpha-glucosidase inhibitor. Bioorg.Med Chem.Lett. 4-15-2009;19(8):2195-2198. View abstract.
  • Tanabe, G., Yoshikai, K., Hatanaka, T., Yamamoto, M., Shao, Y., Minematsu, T., Muraoka, O., Wang, T., Matsuda, H., and Yoshikawa, M. Biological evaluation of de-O-sulfonated analogs of salacinol, the role of sulfate anion in the side chain on the alpha-glucosidase inhibitory activity. Bioorg.Med Chem. 6-1-2007;15(11):3926-3937. View abstract.
  • Tewari, N. C., Ayengar, K. N., and Rangaswami, S. Triterpenes of the root-bark of View abstract.
  • Umamaheswari, S. and Mainzen Prince, P. S. Antihyperglycaemic effect of 'Ilogen-Excel', an ayurvedic herbal formulation in streptozotocin-induced diabetes mellitus. Acta Pol.Pharm 2007;64(1):53-61. View abstract.
  • Wen, X., Yuan, Y., Kuntz, D. A., Rose, D. R., and Pinto, B. M. A combined STD-NMR/molecular modeling protocol for predicting the binding modes of the glycosidase inhibitors kifunensine and salacinol to Golgi alpha-mannosidase II. Biochemistry 5-10-2005;44(18):6729-6737. View abstract.
  • Witczak, Z. J. and Culhane, J. M. Thiosugars: new perspectives regarding availability and potential biochemical and medicinal applications. Appl.Microbiol.Biotechnol. 2005;69(3):237-244. View abstract.
  • Yoshikawa, M., Murakami, T., Yashiro, K., and Matsuda, H. Kotalanol, a potent alpha-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic ayurvedic medicine View abstract.
  • Yoshino, K., Miyauchi, Y., Kanetaka, T., Takagi, Y., and Koga, K. Anti-diabetic activity of a leaf extract prepared from View abstract.
  • Yuasa, H., Izumi, M., and Hashimoto, H. Thiasugars: potential glycosidase inhibitors. Curr.Top.Med Chem. 2009;9(1):76-86. View abstract.
  • Yuasa, H., Takada, J., and Hashimoto, H. Glycosidase inhibition by cyclic sulfonium compounds. Bioorg.Med Chem.Lett. 5-7-2001;11(9):1137-1139. View abstract.
  • Zandberg, W. F., Mohan, S., Kumarasamy, J., and Pinto, B. M. Capillary zone electrophoresis method for the separation of glucosidase inhibitors in extracts of View abstract.
  • Bates RB, Haber WA, Setzer WN, et al. Cyclic hemiacetals with seven-membered rings from an undescribed SalaciaSpecies from monteverde, costa rica. J Nat Prod. 1999 Feb;62(2):340-1. View abstract.
  • Carvalho PR, Silva DH, Bolzani VS, et al. Antioxidant quinonemethide triterpenes from Salacia campestris. Chem Biodivers. 2005 Mar;2(3):367-72. View abstract.
  • Chandrashekar C, Madhyastha S, Benjamin S. Wight extracts on drug induced diabetes mellitus in rats. Herba Polonica. 2008;54:46-58.
  • Clemens RA, Pressman P. Questioning the clinical significance of Salacia oblonga. J Am Diet Assoc. 2005 Aug;105(8):1201; author reply 1201-2. View abstract.
  • Collene AL, Hertzler SR, Williams JA, Wolf BW. Effects of a nutritional supplement containing Salacia oblonga extract and insulinogenic amino acids on postprandial glycemia, insulinemia, and breath hydrogen responses in healthy adults. Nutrition 2005;21:848-54. View abstract.
  • Corsino J, de Carvalho PR, Kato MJ, et al. Biosynthesis of friedelane and quinonemethide triterpenoids is compartmentalized in Maytenus aquifolium and Salacia campestris. Phytochemistry. 2000 Dec;55(7):741-8. View abstract.
  • Deepa MA, Narmatha Bai V. Antibacterial activity of Salacia beddomei. Fitoterapia. 2004 Sep;75(6):589-91. View abstract.
  • Flammang AM, Erexson GL, Mecchi MS, et al. Genotoxicity testing of a Salacia oblonga extract. Food Chem Toxicol. 2006 Nov;44(11):1868-74. View abstract.
  • Flammang AM, Erexson GL, Mirwald JM, et al. Toxicological and cytogenetic assessment of a Salacia oblonga extract in a rat subchronic study. Food Chem Toxicol. 2007 Oct;45(10):1954-62. View abstract.
  • Franklyn AJ, Bettenridge J, Daykin J, et al. Long-term thyroxine treatment and bone mineral density. Lancet 1992;340:9-13. View abstract.
  • Gao XH, Xie N, Feng F. [Studies on chemical constituents of Salacia prinoides]. Zhong Yao Cai. 2008 Sep;31(9):1348-51. View abstract.
  • Heacock PM, Hertzler SR, Williams JA, Wolf BW. Effects of a medical food containing an herbal alpha-glucosidase inhibitor on postprandial glycemia and insulinemia in healthy adults. J Am Diet Assoc 2005;105:65-71. View abstract.
  • Huang TH, He L, Qin Q, et al. Salacia oblonga root decreases cardiac hypertrophy in Zucker diabetic fatty rats: inhibition of cardiac expression of angiotensin II type 1 receptor. Diabetes Obes Metab. 2008 Jul;10(7):574-85. View abstract.
  • Huang TH, Peng G, Li GQ, et al. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: activation of PPAR-alpha. Toxicol Appl Pharmacol. 2006 Feb 1;210(3):225-35. View abstract.
  • Huang TH, Yang Q, Harada M, et al. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-alpha-mediated transcription of fatty acid metabolic genes. Toxicol Appl Pharmacol 2006;210:78-85. View abstract.
  • Im R, Mano H, Matsuura T, et al. Mechanisms of blood glucose-lowering effect of aqueous extract from stems of Kothala himbutu (Salacia reticulata) in the mouse. J Ethnopharmacol. 2009 Jan 21;121(2):234-40. View abstract.
  • Im R, Mano H, Nakatani S, et al. Safety evaluation of the aqueous extract Kothala himbutu (Salacia reticulata) stem in the hepatic gene expression profile of normal mice using DNA microarrays. Biosci Biotechnol Biochem. 2008 Dec;72(12):3075-83. View abstract.
  • Ismail TS, Gopalakrishnan S, Begum VH, Elango V. Anti-inflammatory activity of Salacia oblonga Wall. and Azima tetracantha Lam. J Ethnopharmacol 1997;56:145-52. View abstract.
  • Jayawardena MH, de Alwis NM, Hettigoda V, Fernando DJ. A double blind randomised placebo controlled cross over study of a herbal preparation containing Salacia reticulata in the treatment of type 2 diabetes. J Ethnopharmacol 2005;97:215-8. View abstract.
  • Kajimoto O, Kawamori S, Shimoda H, et al. Effects of a Diet Containing Salacia reticulata on Mild Type 2 Diabetes in Humans. A Placebo-controlled, Cross-over Trial. Nippon Eiyo Shokuryo Gakkaishi 2000;53(5):199-205.
  • Kishi A, Morikawa T, Matsuda H, et al. Structures of new friedelane- and norfriedelane-type triterpenes and polyacylated eudesmane-type sesquiterpene from Salacia chinensis LINN. (S. prinoides DC., Hippocrateaceae) and radical scavenging activities of principal constituents. Chem Pharm Bull (Tokyo). 2003 Sep;51(9):1051-5. View abstract.
  • Kishino E, Ito T, Fujita K, et al. A mixture of Salacia reticulata (Kotala himbutu) aqueous extract and cyclodextrin reduces body weight gain, visceral fat accumulation, and total cholesterol and insulin increases in male Wistar fatty rats. Nutr Res. 2009 Jan;29(1):55-63. View abstract.
  • Kishino E1, Ito T, Fujita K, et al. A mixture of the Salacia reticulata (Kotala himbutu) aqueous extract and cyclodextrin reduces the accumulation of visceral fat mass in mice and rats with high-fat diet-induced obesity. J Nutr. 2006 Feb;136(2):433-9. View abstract.
  • Krishnakumar K, Augusti KT, Vijayammal PL. Hypoglycaemic and anti-oxidant activity of Salacia oblonga Wall. extract in streptozotocin-induced diabetic rats. Indian J Physiol Pharmacol. 1999 Oct;43(4):510-4. View abstract.
  • Kumara N, Pathirana RN, Pathirana C. Hypoglycemic Activity of the Root and Stem of Salacia reticulata. var. ß-diandra. in Alloxan Diabetic Rats. Pharmaceutical Biology. 2008. 43: 219-225.
  • Li Y, Huang TH, Yamahara J. Salacia root, a unique Ayurvedic medicine, meets multiple targets in diabetes and obesity. Life Sci. 2008 May 23;82(21-22):1045-9. View abstract.
  • Li Y, Peng G, Li Q, et al. Salacia oblonga improves cardiac fibrosis and inhibits postprandial hyperglycemia in obese Zucker rats. Life Sci 2004;75:1735-46. View abstract.
  • Matsuda H, Morikawa T, Masayuki Y. Antidiabetogenic constituents from several natural medicines. Pure Appl Chem 2002;74:1301-8.
  • Matsuda H, Murakami T, Yashiro K, et al. Antidiabetic principles of natural medicines. IV. Aldose reductase and qlpha-glucosidase inhibitors from the roots of Salacia oblonga Wall. (Celastraceae): structure of a new friedelane-type triterpene, kotalagenin 16-acetate. Chem Pharm Bull (Tokyo) 1999;47:1725-9. View abstract.
  • Matsuda H, Murakami T, Yashiro K, et al. Antidiabetic principles of natural medicines. IV. Aldose reductase and qlpha-glucosidase inhibitors from the roots of Salacia oblonga Wall. (Celastraceae): structure of a new friedelane-type triterpene, kotalagenin 16-acetate. Chem Pharm Bull (Tokyo) 1999;47:1725-9. View abstract.
  • Morikawa T, Kishi A, Pongpiriyadacha Y, et al. Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpene and aldose reductase inhibitors from Salacia chinensis. J Nat Prod. 2003 Sep;66(9):1191-6. View abstract.
  • Nasi R, Patrick BO, Sim L, et al. Studies directed toward the stereochemical structure determination of the naturally occurring glucosidase inhibitor, kotalanol: synthesis and inhibitory activities against human maltase glucoamylase of seven-carbon, chain-extended homologues of salacinol. J Org.Chem. 8-15-2008;73(16):6172-6181. View abstract.
  • Oe H1, Ozaki S. Hypoglycemic effect of 13-membered ring thiocyclitol, a novel alpha-glucosidase inhibitor from Kothala-himbutu (Salacia reticulata). Biosci Biotechnol Biochem. 2008 Jul;72(7):1962-4. View abstract.
  • Ozaki S, Oe H, Kitamura S. Alpha-glucosidase inhibitor from Kothala-himbutu (Salacia reticulata WIGHT). J Nat Prod. 2008 Jun;71(6):981-4. View abstract.
  • Ratnasooriya WD, Jayakody JR, Premakumara GA. Adverse pregnancy outcome in rats following exposure to a Salacia reticulata (Celastraceae) root extract. Braz J Med Biol Res 2003;36:931-5. View abstract.
  • Rong X, Kim MS, Su N, et al. An aqueous extract of Salacia oblonga root, a herb-derived peroxisome proliferator-activated receptor-alpha activator, by oral gavage over 28 days induces gender-dependent hepatic hypertrophy in rats. Food Chem Toxicol. 2008 Jun;46(6):2165-72. View abstract.
  • Setzer WN, Holland MT, Bozeman CA, et al. Isolation and frontier molecular orbital investigation of bioactive quinone-methide triterpenoids from the bark of Salacia petenensis. Planta Med. 2001 Feb;67(1):65-9. View abstract.
  • Shimoda H1, Asano I, Yamada Y. [Antigenicity and phototoxicity of water-soluble extract from Salacia reticulata (Celastraceae)]. Shokuhin Eiseigaku Zasshi. 2001 Apr;42(2):144-7. View abstract.
  • Singh A, Duggal S. Salacia spp: Hypoglycemic principles and possible role in diabetes management. Integrative Medicine. 2010. 9:40-43.
  • Tanabe G, Matsuoka K, Minematsu T, et al.Structure-activity relationships of salacinol and kotalanol against alpha-glucosidase inhibitory activity and evaluation of Salacia extracts by LC-MS. Yakugaku Zasshi. 2007. 127(Suppl 4): 129-130.
  • Thiem DA, Sneden AT, Khan SI, et al. Bisnortriterpenes from Salacia madagascariensis. J Nat Prod. 2005 Feb;68(2):251-4. View abstract.
  • Vellosa JC, Khalil N, Gutierres O, et al. Salacia campestris root bark extract: Peroxidase inhibition, antioxidant and antiradical profile. BRAZ J PHARM SCI. 2009. 45. 10.1590/S1984-82502009000100012.
  • Venkateswarlu V, Kokate C, Rambhau D, et al. Pharmaceutical Investigations of a Film Forming Material Isolated from Roots of Salacia Macrosperma. Drug Development and Industrial Pharmacy. 2008. 19:461-472.
  • Venkateswarlu V, Kokate CK, Rambhau D, et al. Antidiabetic Activity of Roots of Salacia macrosperma. Planta Med. 1993 Oct;59(5):391-3. View abstract.
  • Venkateswarlu V, Kumar N, Sreekanth J. Development of transdermal drug delivery systems with a natural polymer from Salacia macrosperma. Indian Drugs. 2000. 37:407-411.
  • Williams JA, Choe YS, Noss MJ, et al. Extract of Salacia oblonga lowers acute glycemia in patients with type 2 diabetes. Am J Clin Nutr 2007;86:124-30. View abstract.
  • Wolf BW, Weisbrode SE. Safety evaluation of an extract from Salacia oblonga. Food Chem Toxicol 2003;41:867-74. View abstract.
  • Yoshikawa M, Morikawa T, Matsuda H, et al. Absolute stereostructure of potent alpha-glucosidase inhibitor, Salacinol, with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulata. Bioorg Med Chem. 2002 May;10(5):1547-54. View abstract.
  • Yoshikawa M, Ninomiya K, Shimoda H, et al. Hepatoprotective and antioxidative properties of Salacia reticulata: preventive effects of phenolic constituents on CCl4-induced liver injury in mice. Biol Pharm Bull 2002;25:72-6. View abstract.
  • Yoshikawa M, Nishida N, Shimoda H, et al. [Polyphenol constituents from Salacia species: quantitative analysis of mangiferin with alpha-glucosidase and aldose reductase inhibitory activities]. Yakugaku Zasshi 2001;121:371-8. View abstract.
  • Yoshikawa M, Shimoda H, Nishida N, et al. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J Nutr 2002;132:1819-24. View abstract.
  • Yoshikawa M1, Pongpiriyadacha Y, Kishi A, et al. [Biological activities of Salacia chinensis originating in Thailand: the quality evaluation guided by alpha-glucosidase inhibitory activity]. Yakugaku Zasshi. 2003 Oct;123(10):871-80. View abstract.
  • Yoshikawa M1, Zhang Y, Wang T, et al. New triterpene constituents, foliasalacins A(1)-A(4), B(1)-B(3), and C, from the leaves of Salacia chinensis. Chem Pharm Bull (Tokyo). 2008 Jul;56(7):915-20. View abstract.
  • Yuan G, Yi Y. [Studies on chemical constituents of the roots of Salacia hainanensis]. Zhong Yao Cai. 2005 Jan;28(1):27-9. View abstract.
  • Zhang Y1, Nakamura S, Pongpiriyadacha Y, et al. Absolute structures of new megastigmane glycosides, foliasalaciosides E(1), E(2), E(3), F, G, H, and I from the leaves of Salacia chinensis. Chem Pharm Bull (Tokyo). 2008 Apr;56(4):547-53. View abstract.

Vitamins Survey

Have you ever purchased SALACIA?

Did you or will you purchase this product in-store or online?

Where did you or where do you plan to purchase this product?

Where did you or where do you plan to purchase this product?

What factors influenced or will influence your purchase? (check all that apply)

Vitamins Survey

Where did you or where do you plan to purchase this product?

Do you buy vitamins online or instore?

What factors are most important to you? (check all that apply)

More Resources for SALACIA

CONDITIONS OF USE AND IMPORTANT INFORMATION: This information is meant to supplement, not replace advice from your doctor or healthcare provider and is not meant to cover all possible uses, precautions, interactions or adverse effects. This information may not fit your specific health circumstances. Never delay or disregard seeking professional medical advice from your doctor or other qualified health care provider because of something you have read on WebMD. You should always speak with your doctor or health care professional before you start, stop, or change any prescribed part of your health care plan or treatment and to determine what course of therapy is right for you.

This copyrighted material is provided by Natural Medicines Comprehensive Database Consumer Version. Information from this source is evidence-based and objective, and without commercial influence. For professional medical information on natural medicines, see Natural Medicines Comprehensive Database Professional Version.
© Therapeutic Research Faculty 2018.