Find Information About:

Drugs & Supplements

Get information and reviews on prescription drugs, over-the-counter medications, vitamins, and supplements. Search by name or medical condition.

Pill Identifier

Pill Identifier

Having trouble identifying your pills?

Enter the shape, color, or imprint of your prescription or OTC drug. Our pill identification tool will display pictures that you can compare to your pill.

Get Started
My Medicine

My Medicine

Save your medicine, check interactions, sign up for FDA alerts, create family profiles and more.

Get Started

WebMD Health Experts and Community

Talk to health experts and other people like you in WebMD's Communities. It's a safe forum where you can create or participate in support groups and discussions about health topics that interest you.

  • Second Opinion

    Second Opinion

    Read expert perspectives on popular health topics.

  • Community


    Connect with people like you, and get expert guidance on living a healthy life.

Got a health question? Get answers provided by leading organizations, doctors, and experts.

Get Answers

Sign up to receive WebMD's award-winning content delivered to your inbox.

Sign Up

Heart Disease Health Center

Font Size

Scientists Hone In On Genetic Culprit in Heart Birth Defects

WebMD Health News

Feb. 22, 2001 -- A mutation in at least one gene -- and possibly two -- has been cornered as the probable culprit for a range of heart birth defects generically referred to as DiGeorge syndrome, according to three separate reports in scientific journals.

Jonathan Epstein, MD, co-author of a report in the Feb. 23 edition of Cell, tells WebMD that a mutation in a gene known as Tbx1 appears to account for DiGeorge syndrome, which affects one in every 4,000 children.

The syndrome can involve heart birth defects, head and facial deformities and other problems. "The most common and devastating aspect of the syndrome is heart disease," says Epstein, a cardiologist at the University of Pennsylvania Medical Center in Philadelphia.

Isolation of the same gene was simultaneously reported by other research groups in the journals Nature Genetics and Nature.

All of the researchers used mouse models to isolate the gene, and Epstein says the next step is to replicate the work in humans. "The first major outcome from all of these papers will be to spur the human genetics field to look very hard for mutations in patients," he tells WebMD. "We have to extend these studies to determine how many patients with congenital heart disease have the mutation in Tbx1."

When a test for the gene mutation is developed, it can be used to screen parents who may be carrying it to determine the risks for their children, and in prenatal screening, Epstein says.

Epstein tells WebMD it has been known for some time that DiGeorge syndrome is associated with deletions of large blocks of DNA on chromosome 22. Not known until now is the precise gene in that region responsible for the defect, he says.

The strategy for pinpointing Tbx1 used by the researchers is a remarkable example of genetic detective work. Epstein explains that genes comparable to those on the human chromosome 22 are found in mice on another chromosome -- number 16. By deleting the region on that chromosome believed to be associated with symptoms of DiGeorge syndrome, the researchers were able to breed a line of mice with conditions that mimicked the syndrome.

1 | 2 | 3

Today on WebMD

x-ray of human heart
A visual guide.
atrial fibrillation
Symptoms and causes.
heart rate graph
10 things to never do.
heart rate
Get the facts.
empty football helmet
red wine
eating blueberries
Simple Steps to Lower Cholesterol
Inside A Heart Attack
Omega 3 Sources
Salt Shockers
lowering blood pressure