BRANCHED-CHAIN AMINO ACIDS

OTHER NAME(S):

Acide Isovalérique de Leucine, Acides Aminés à Chaîne Ramifiée, Acides Aminés Ramifiés, Aminoacidos Con Cadenas Laterales Ramificadas, BCAA, BCAAs, Branched Chain Amino Acid Therapy, Branched Chain Amino Acids, Isoleucine, Isoleucine Ethyl Ester HCl, Leucine, Leucine Ethyl Ester HCl, Leucine Isovaleric Acid, Leucine Methyl Ester HCl, L-Isoleucine, L-Leucine, L-Leucine Pyroglutamate, L-Valine, N-Acetyl Leucine, N-Acétyl Leucine, Valine, 2-amino-3-methylvaleric acid, 2-amino-4-methylvaleric acid, 2-amino-3-methylbutanoic acid.<br/><br/>

Overview

Overview Information

Branched-chain amino acids are essential nutrients that the body obtains from proteins found in food, especially meat, dairy products, and legumes. They include leucine, isoleucine, and valine. "Branched-chain" refers to the chemical structure of these amino acids. People use branched-chain amino acids for medicine.

Branched-chain amino acids are commonly taken by mouth or given intravenously (by IV) by healthcare providers for brain conditions due to liver disease (acute, chronic, and latent hepatic encephalopathy). Branched-chain amino acids are used for many other conditions and may be taken by athletes to improve athletic performance, prevent fatigue, improve concentration, and reduce muscle breakdown during intense exercise. But there is limited scientific research to support these other uses.

How does it work?

Branched-chain amino acids stimulate the building of protein in muscle and possibly reduce muscle breakdown. Branched-chain amino acids seem to prevent faulty message transmission in the brain cells of people with advanced liver disease, mania, tardive dyskinesia, and anorexia.

Uses

Uses & Effectiveness?

Possibly Effective for

  • Anorexia. Certain illnesses cause some people to have poor appetite. Taking branched-chain amino acids by mouth seems to improve appetite and overall nutrition in people with kidney failure, cancer, or liver disease.
  • Poor brain function related to liver disease. Taking branched-chain amino acids by mouth seems to improve liver function in people with poor brain function caused by liver disease. Branched-chain amino acids may also improve mental function or reverse comas in people with this condition, but conflicting results exist. Branched-chain amino acids don't appear to reduce the chance of death in people with this condition.
  • Mania. Consuming a drink containing branched-chain amino acids seems to reduce symptoms of mania.
  • Movement disorder called tardive dyskinesia. Taking branched-chain amino acids by mouth seems to reduce symptoms of the muscle disorder called tardive dyskinesia.

Possibly Ineffective for

  • Liver cancer. Drinking a beverage containing 50 grams of branched-chain amino acids twice daily for up to one year does not seem to improve survival or reduce recurrence in people with liver cancer who have undergone liver resection.

Likely InEffective for

  • Amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease). Early studies showed promising results, but more recent studies show no benefit of branched chain amino acids in people with ALS. In fact, taking branched-chain amino acids might make lung function worse and increase the chance of death in people with this condition.

Insufficient Evidence for

  • Liver swelling caused by alcohol. Taking branched-chain amino acids daily along with a controlled diet does not reduce the chance of death in people with liver swelling caused by drinking alcohol.
  • Athletic performance. Taking branched-chain amino acids may reduce fatigue caused by exercising. In many cases, this improvement is found when branched-chain amino acids are taken with arginine or green tea powder. However, not all studies agree. Some studies also show that taking branched chain amino acids may reduce muscle soreness after exercise. However, taking branched-chain amino acids does not appear to improve strength, running times, or cycling speed.
  • Diabetes. Eating carbohydrates with an amino acid/protein mixture might improve insulin response in people with diabetes. However, it is not known if taking branched-chain amino acids as a supplement will provide the same benefits.
  • Long-term liver damage (liver cirrhosis). It is not clear if branched-chain amino acids benefit people with liver cirrhosis. Taking branched-chain amino acids seems to improve liver function and reduce liver complications in people with early-stage liver cirrhosis. However, taking branched-chain amino acids does not seem improve liver function or survival in people with advanced liver cirrhosis. There is conflicting evidence about the effects of branched-chain amino acids on quality of life in people with liver cirrhosis.
  • Muscle breakdown. Taking branched-chain amino acids by mouth seems to reduce the breakdown of muscles during exercise. But not all studies agree.
  • Genetic disorder that increases phenylalanine in the blood (Phenylketonuria). Taking branched-chain amino acids for up to 6 months seems to improve attention in children with phenylketonuria.
  • Disease of the spine called spinocerebellar degeneration (SCD). There are conflicting results about the effects of branched-chain amino acids in people with a disease of the spine called SCD. Some early research suggests that taking branched-chain amino acids by mouth might improve some symptoms of SCD. However, other research suggests that branched-chain amino acids do not improve muscle control in people with SCD.
  • Preventing muscle wasting in people confined to bed.
  • Other conditions.
More evidence is needed to rate the effectiveness of branched-chain amino acids for these uses.

Side Effects

Side Effects & Safety

Branched-chain amino acids are LIKELY SAFE when injected intravenously (by IV) by a healthcare professional.

Branched-chain amino acids are POSSIBLY SAFE when taken by mouth appropriately. Some side effects are known to occur, such as fatigue and loss of coordination. Branched-chain amino acids should be used cautiously before or during activities where performance depends on motor coordination, such as driving. Branched-chain amino acids might also cause stomach problems, including nausea, vomiting, diarrhea, and stomach bloating. In rare cases, branched-chain amino acids may cause high blood pressure, headache, or skin whitening.

Special Precautions & Warnings:

Pregnancy and breast-feeding: There is not enough reliable information about the safety of taking branched-chain amino acids if you are pregnant or breast feeding. Stay on the safe side and avoid use.

Children: Branched-chain amino acids are POSSIBLY SAFE for children when taken by mouth, short-term. Branched-chain amino acids have been used safely in children for up to 6 months.

Amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease): The use of branched-chain amino acids has been linked with lung failure and higher death rates when used in patients with ALS. If you have ALS, do not use branched-chain amino acids until more is known.

Branched-chain ketoaciduria: Seizures and severe mental and physical retardation can result if intake of branched-chain amino acids is increased. Don't use branched-chain amino acids if you have this condition.

Chronic alcoholism: Dietary use of branched-chain amino acids in alcoholics has been associated with liver disease leading to brain damage (hepatic encephalopathy).

Low blood sugar in infants: Intake of one of the branched-chain amino acids, leucine, has been reported to lower blood sugar in infants with a condition called idiopathic hypoglycemia. This term means they have low blood sugar, but the cause is unknown. Some research suggests leucine causes the pancreas to release insulin, and this lowers blood sugar.

Surgery: Branched-chain amino acids might affect blood sugar levels, and this might interfere with blood sugar control during and after surgery. Stop using branched-chain amino acids at least 2 weeks before a scheduled surgery.

Interactions

Interactions?

Moderate Interaction

Be cautious with this combination

!
  • Levodopa interacts with BRANCHED-CHAIN AMINO ACIDS

    Branched-chain amino acids might decrease how much levodopa the body absorbs. By decreasing how much levodopa the body absorbs, branched-chain amino acids might decrease the effectiveness of levodopa. Do not take branched-chain amino acids and levodopa at the same time.

  • Medications for diabetes (Antidiabetes drugs) interacts with BRANCHED-CHAIN AMINO ACIDS

    Branched-chain amino acids might decrease blood sugar. Diabetes medications are also used to lower blood sugar. Taking branched-chain amino acids along with diabetes medications might cause your blood sugar to go too low. Monitor your blood sugar closely. The dose of your diabetes medication might need to be changed.<br/><br/> Some medications used for diabetes include glimepiride (Amaryl), glyburide (DiaBeta, Glynase PresTab, Micronase), insulin, pioglitazone (Actos), rosiglitazone (Avandia), chlorpropamide (Diabinese), glipizide (Glucotrol), tolbutamide (Orinase), and others.

Minor Interaction

Be watchful with this combination

!
  • Diazoxide (Hyperstat, Proglycem) interacts with BRANCHED-CHAIN AMINO ACIDS

    Branched-chain amino acids are used to help make proteins in the body. Taking Diazoxide along with branched-chain amino acids might decrease the effects of branched-chain amino acids on proteins. More information is needed about this interaction.

  • Medications for inflammation (Corticosteroids) interacts with BRANCHED-CHAIN AMINO ACIDS

    Branched-chain amino acids are used to help make proteins in the body. Taking drugs called glucocorticoids along with branched-chain amino acids might decrease the effects of branched-chain amino acids on proteins. More information is needed about this interaction.

  • Thyroid hormone interacts with BRANCHED-CHAIN AMINO ACIDS

    Branched-chain amino acids help the body make proteins. Some thyroid hormone medications can decrease how fast the body breaks down branched-chain amino acids. However, more information is needed to know the significance of this interaction.

Dosing

Dosing

The following doses have been studied in scientific research:

BY MOUTH:

  • For a brain condition due to liver disease (hepatic encephalopathy): 240 mg/kg/day up to 25 grams of branched-chain amino acids daily for three months. In some cases the dose is taken in three divided doses daily.
  • For mania: a 60 gram branched-chain amino acid drink containing valine, isoleucine, and leucine in a ratio of 3:3:4 taken every morning for 7 days.
  • For tardive dyskinesia: a branched-chain amino acid drink containing valine, isoleucine, and leucine at a dose of 222 mg/kg taken three times daily for 3 weeks.
  • For anorexia and improving overall nutrition in elderly malnourished hemodialysis patients: granules of branched-chain amino acids consisting of valine, leucine, and isoleucine at a dose of 4 grams taken three times daily.
  • For anorexia in patients with liver disease: 2.4 gram packets of branched-chain amino acids has been taken in two-packet doses three times daily for one year.
  • For anorexia in cancer patients: 4.8 grams of branched chain amino acids taken three times daily for one week.
The estimated average requirement (EAR) of branched-chain amino acids is 68 mg/kg/day (leucine 34 mg, isoleucine 15 mg, valine 19 mg) for adults. However, some researchers think that the requirement should be around 144 mg/kg/day. Some researchers also think the EARs for children are also low. EARs for branched-chain amino acids for children are: ages 7-12 months, 134 mg/kg/day; 1-3 years, 98 mg/kg/day; 4-8 years, 81 mg/kg/day; boys 9-13 years, 81 mg/kg/day; girls 9-13 years, 77 mg/kg/day; boys 14-18 years, 77 mg/kg/day; girls 14-18 years, 71 mg/kg/day.

INTRAVENOUS (IV):
  • Healthcare providers give branched-chain amino acids intravenously (by IV) for brain enlargement due to liver disease (hepatic encephalopathy).

View References

REFERENCES:

  • Mazokopakis EE, Papadakis JA, Papadomanolaki MG, et al. Effects of 12 months treatment with L-selenomethionine on serum anti-TPO levels in patients with Hashimoto's thyroiditis. Thyroid 2007;17:609-12. View abstract.
  • Meyer F, Galan P, Douville P, et al. Antioxidant vitamin and mineral supplementation and prostate cancer prevention in the SU.VI.MAX trial. Int J Cancer 2005;116:182-6. View abstract.
  • Milde D, Novak O, Stu ka V, et al. Serum levels of selenium, manganese, copper, and iron in colorectal cancer patients. Biol Trace Elem Res 2001;79:107-14.. View abstract.
  • Morgia G, Russo G, Voce S, et al. Serenoa repens, lycopene and selenium versus tamsulosin for the treatment of LUTS/BPH. An Italian multicenter double-blinded randomized study between single or combination therapy (PROCOMB trial). Prostate 2014;74(15):1471-80. View abstract .
  • Centre for Reviews and Dissemination. Complementary/alternative therapies for premenstrual syndrome: a systematic review of randomized controlled trials (Structured abstract). 2012;3
  • Centre for Reviews and Dissemination. Dietary supplements and herbal remedies for premenstrual syndrome (PMS): a systematic research review of the evidence for their efficacy (Structured abstract). 2012;3
  • Centre for Reviews and Dissemination. Does scientific evidence support the use of non-prescription supplements for treatment of acute menopausal symptoms such as hot flushes? 2012;3
  • Centre for Reviews and Dissemination. Efficacy of self-help and alternative treatments of premenstrual syndrome (Structured abstract). 2012;3
  • Centre for Reviews and Dissemination. Herbs, vitamins and minerals in the treatment of premenstrual syndrome: a systematic review (;Structured abstract). 2012;3
  • Centre for Reviews and Dissemination. Menopause: a review of botanical dietary supplements (;Provisional abstract). 2012;3
  • Centre for Reviews and Dissemination. Oral essential fatty acid supplementation in atopic dermatitis: a meta-analysis of placebo-controlled trials (Structured abstract). 2012;3
  • Cheema, D., Coomarasamy, A., and El Toukhy, T. Non-hormonal therapy of post-menopausal vasomotor symptoms: a structured evidence-based review. Arch Gynecol.Obstet 2007;276(5):463-469. View abstract.
  • Cheung, A. M. and Walji, R. Review: most herbal therapies have no benefit for menopausal symptoms. ACP J Club. 2003;139(1):21. View abstract.
  • Chilton, S. A. Cognitive behaviour therapy for the chronic fatigue syndrome. Evening primrose oil and magnesium have been shown to be effective. BMJ 4-27-1996;312(7038):1096. View abstract.
  • Conquer, J. A., Roelfsema, H., Zecevic, J., Graham, T. E., and Holub, B. J. Effect of exercise on FA profiles in n-3 FA-supplemented and -nonsupplemented premenopausal women. Lipids 2002;37(10):947-951. View abstract.
  • Corbett R, Meagher F, and Leonard B. The effect of acute alcohol intoxication in psychometric testing and 5-HT-induced platelet aggregation in normal subjects; modulatory roles of evening primrose oil. Human Psychopharmacology 1991;6(253):256.
  • Coskery G, Cowley N Allen R. The effect of dietary supplementation with evening primrose oil on skin surface texture in atopic dermatitis. J Investigative Dermatitis 1988;91(4):413.
  • Dante, G. and Facchinetti, F. Herbal treatments for alleviating premenstrual symptoms: a systematic review. J Psychosom.Obstet.Gynaecol. 2011;32(1):42-51. View abstract.
  • Darsareh, F., Taavoni, S., Joolaee, S., and Haghani, H. Effect of aromatherapy massage on menopausal symptoms: a randomized placebo-controlled clinical trial. Menopause. 2012;19(9):995-999. View abstract.
  • Douglas, S. Premenstrual syndrome. Evidence-based treatment in family practice. Can Fam.Physician 2002;48:1789-1797. View abstract.
  • el Ela, S. H., Prasse, K. W., Carroll, R., and Bunce, O. R. Effects of dietary primrose oil on mammary tumorigenesis induced by 7,12-dimethylbenz(a)anthracene. Lipids 1987;22(12):1041-1044. View abstract.
  • Endres, S., Lorenz, R., and Loeschke, K. Lipid treatment of inflammatory bowel disease. Curr Opin.Clin Nutr Metab Care 1999;2(2):117-120. View abstract.
  • Engler MM. The hypotensive effect of dietary gamma-linolenic acid and associated alterations in tissue fatty acid composition and the Renin-Angiotensin system. Abstracts from the International Symposium on Gamma Linolenic Acid, American Oil Chemists Society, Health and Nutrition Division Annual Conference, San Diego, CA, 2000.
  • Engler, M. M. Comparative study of diets enriched with evening primrose, black currant, borage or fungal oils on blood pressure and pressor responses in spontaneously hypertensive rats. Prostaglandins Leukot.Essent.Fatty Acids 1993;49(4):809-814. View abstract.
  • Engler, M. M., Schambelan, M., Engler, M. B., Ball, D. L., and Goodfriend, T. L. Effects of dietary gamma-linolenic acid on blood pressure and adrenal angiotensin receptors in hypertensive rats. Proc.Soc.Exp.Biol.Med. 1998;218(3):234-237. View abstract.
  • Ernst E. Premenstrual syndrome: Does evening primrose oil have a therapeutic effect? Fortschritte der Medizin 1991;109(19):11.
  • Ernst, E. and Chrubasik, S. Phyto-anti-inflammatories. A systematic review of randomized, placebo-controlled, double-blind trials. Rheum.Dis Clin North Am 2000;26(1):13-27, vii. View abstract.
  • Ferrando, J. [Clinical trial of a topical preparation containing urea, sunflower oil, evening primrose oil, wheat germ oil and sodium pyruvate, in several hyperkeratotic skin conditions]. Med Cutan.Ibero.Lat.Am 1986;14(2):133-137. View abstract.
  • Ferreira MJ, Fiadeiro T Silva M Soares AP. Topical gamma-linolenic acid therapy in atopic dermatitis: a clinical and biometric evaluation. Allergo J 1998;7(4):213-216.
  • Field, E. J. and Joyce, G. Effect of prolonged ingestion of gamma-linolenate by MS patients. Eur.Neurol. 1978;17(2):67-76. View abstract.
  • Fugate, S. E. and Church, C. O. Nonestrogen treatment modalities for vasomotor symptoms associated with menopause. Ann Pharmacother 2004;38(9):1482-1499. View abstract.
  • Garcia C, Carter J, and Chou A. Gamma linolenic acid causes weight loss and lower blood pressure in overweight patients with family history of obesity. Swed J Biol Med 1986;4:8-11.
  • Gateley, C. A. and Mansel, R. E. Management of cyclical breast pain. Br.J Hosp.Med 1990;43(5):330-332. View abstract.
  • Gateley, C. A. and Mansel, R. E. Management of the painful and nodular breast. Br Med Bull. 1991;47(2):284-294. View abstract.
  • Gateley, C. A., Maddox, P. R., Mansel, R. E., and Hughes, L. E. Mastalgia refractory to drug treatment. Br J Surg. 1990;77(10):1110-1112. View abstract.
  • Gateley, C. A., Maddox, P. R., Pritchard, G. A., Sheridan, W., Harrison, B. J., Pye, J. K., Webster, D. J., Hughes, L. E., and Mansel, R. E. Plasma fatty acid profiles in benign breast disorders. Br J Surg. 1992;79(5):407-409. View abstract.
  • Gateley, C. A., Miers, M., Mansel, R. E., and Hughes, L. E. Drug treatments for mastalgia: 17 years experience in the Cardiff Mastalgia Clinic. J R.Soc Med 1992;85(1):12-15. View abstract.
  • Gimenes, O. M., da Silva, M. J., and Benko, M. A. [Flower essences: vibrational intervention of diagnostic and therapeutic possibilities]. Rev.Esc Enferm.USP. 2004;38(4):386-395. View abstract.
  • Girman, A., Lee, R., and Kligler, B. An integrative medicine approach to premenstrual syndrome. Am J Obstet.Gynecol. 2003;188(5 Suppl):S56-S65. View abstract.
  • Goodwin, P. J., Neelam, M., and Boyd, N. F. Cyclical mastopathy: a critical review of therapy. Br.J Surg. 1988;75(9):837-844. View abstract.
  • Goyal, A. and Mansel, R. E. A randomized multicenter study of gamolenic acid (Efamast) with and without antioxidant vitamins and minerals in the management of mastalgia. Breast J 2005;11(1):41-47. View abstract.
  • Greaves, M. W. and Corbett, M. F. Treatment of atopic eczema with evening primrose oil. Br.J Dermatol. 1988;118(3):449-451. View abstract.
  • Gruenwald, J., Graubaum, H. J., and Busch, R. Efficacy and tolerability of a fixed combination of thyme and primrose root in patients with acute bronchitis. A double-blind, randomized, placebo-controlled clinical trial. Arzneimittelforschung 2005;55(11):669-676. View abstract.
  • Gruenwald, J., Graubaum, H. J., and Busch, R. Evaluation of the non-inferiority of a fixed combination of thyme fluid- and primrose root extract in comparison to a fixed combination of thyme fluid extract and primrose root tincture in patients with acute bronchitis. A single-blind, randomized, bi-centric clinical trial. Arzneimittelforschung 2006;56(8):574-581. View abstract.
  • Guenther, L. and Wexler, D. Efamol in the treatment of atopic dermatitis. J Am Acad.Dermatol. 1987;17(5 Pt 1):860. View abstract.
  • Haimov-Kochman, R. and Hochner-Celnikier, D. Hot flashes revisited: pharmacological and herbal options for hot flashes management. What does the evidence tell us? Acta Obstet Gynecol.Scand 2005;84(10):972-979. View abstract.
  • Halat, K. M. and Dennehy, C. E. Botanicals and dietary supplements in diabetic peripheral neuropathy. J Am Board Fam.Pract. 2003;16(1):47-57. View abstract.
  • Hanna K, Day A O'Neill S Patterson C Lyons-Wall P. Does scientific evidence support the use of non-prescription supplements for treatment of acute menopausal symptoms such as hot flushes? Nutrition and Dietetics 2005;62(4):138-151.
  • Hassig, A., Liang, W. X., and Stampfli, K. Bronchial asthma: information on phytotherapy with essential fatty acids. Interactions between essential fatty acids and steroid hormones. Med Hypotheses 2000;54(1):72-74. View abstract.
  • Hauben, M. Comment: evening primrose oil in the treatment of rheumatoid arthritis-- proper application of statistical analysis. Ann.Pharmacother. 1994;28(7-8):973. View abstract.
  • Holman CP and Bell AF. A trial of evening primrose oil in the treatment of chronic schizophrenia. J Orhtomolecular Psych 1983;12:302-304.
  • Horrobin DF, Manku MS Brush M et al. Abnormalities in plasma essential fatty acid levels in women with premenstrual syndrome and nonmalignant breast disease. J Nutr Med 1991;2:259-264.
  • Horrobin, D. F. and Morse, P. F. Evening primrose oil and atopic eczema. Lancet 1-28-1995;345(8944):260-261. View abstract.
  • Horrobin, D. F. and Stewart, C. Evening primrose oil and atopic eczema. Lancet 7-7-1990;336(8706):50. View abstract.
  • Horrobin, D. F. and Stewart, C. Evening primrose oil in atopic eczema. Lancet 4-7-1990;335(8693):864-865. View abstract.
  • Horrobin, D. F. Effects of evening primrose oil in rheumatoid arthritis. Ann Rheum.Dis 1989;48(11):965-966. View abstract.
  • Horrobin, D. F. Essential fatty acid and prostaglandin metabolism in Sjogren's syndrome, systemic sclerosis and rheumatoid arthritis. Scand.J Rheumatol.Suppl 1986;61:242-245. View abstract.
  • Horrobin, D. F. Lipids and schizophrenia. Br J Psychiatry 1999;175:88. View abstract.
  • Horrobin, D. F. Multiple sclerosis: the rational basis for treatment with colchicine and evening primrose oil. Med Hypotheses 1979;5(3):365-378. View abstract.
  • Horrobin, D. F. Nutritional and medical importance of gamma-linolenic acid. Prog Lipid Res 1992;31(2):163-194. View abstract.
  • Horrobin, D. F. The importance of gamma-linolenic acid and prostaglandin E1 in human nutrition and medicine. Journal of Holistic Medicine. 1981;3(2):118-139.
  • Horrobin, D. F. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr.Res 4-10-1998;30(3):193-208. View abstract.
  • Horrobin, D. F. The role of essential fatty acids and prostaglandins in the premenstrual syndrome. J Reprod.Med 1983;28(7):465-468. View abstract.
  • Hounsom, L., Horrobin, D. F., Tritschler, H., Corder, R., and Tomlinson, D. R. A lipoic acid-gamma linolenic acid conjugate is effective against multiple indices of experimental diabetic neuropathy. Diabetologia 1998;41(7):839-843. View abstract.
  • Humphreys F, Symons J, Brown H, and et al. The effects of gamolenic acid on adult atopic eczema and premenstrual exacerbation of eczema. Eur.J.Dermatol. 1994;4(598):603.
  • Hunter JO and Wilson AJ. A double-blind controlled trial of gammalinolenic acid (GLA) in the management of pre-menstrual gastrointestinal symptoms. Proc.2nd International Symposium on Premenstrual, Postpartum and Menopausal Mood Disorders 1987;abstract 44.
  • Huntley, A. Drug-herb interactions with herbal medicines for menopause. J Br Menopause.Soc 2004;10(4):162-165. View abstract.
  • Huntley, A. L. and Ernst, E. A systematic review of herbal medicinal products for the treatment of menopausal symptoms. Menopause. 2003;10(5):465-476. View abstract.
  • Morgan, M. Y., Hawley, K. E., and Stambuk, D. Amino acid tolerance in cirrhotic patients following oral protein and amino acid loads. Aliment.Pharmacol.Ther 1990;4(2):183-200. View abstract.
  • Mori, M., Adachi, Y., Mori, N., Kurihara, S., Kashiwaya, Y., Kusumi, M., Takeshima, T., and Nakashima, K. Double-blind crossover study of branched-chain amino acid therapy in patients with spinocerebellar degeneration. J Neurol.Sci 3-30-2002;195(2):149-152. View abstract.
  • Nakaya, Y., Okita, K., Suzuki, K., Moriwaki, H., Kato, A., Miwa, Y., Shiraishi, K., Okuda, H., Onji, M., Kanazawa, H., Tsubouchi, H., Kato, S., Kaito, M., Watanabe, A., Habu, D., Ito, S., Ishikawa, T., Kawamura, N., and Arakawa, Y. BCAA-enriched snack improves nutritional state of cirrhosis. Nutrition 2007;23(2):113-120. View abstract.
  • Nilsson, M., Holst, J. J., and Bjorck, I. M. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr 2007;85(4):996-1004. View abstract.
  • Poortmans, J., Parry, Billings M., Duchateau, J., Leclercq, R., Brasseur, M., and Newsholme, E. Plasma amino acid and cytokine concentrations following a marathon race. Portuguese journal of human performance studies (Lisboa) 1993;9(1):9-14.
  • Portier, H., Chatard, J. C., Filaire, E., Jaunet-Devienne, M. F., Robert, A., and Guezennec, C. Y. Effects of branched-chain amino acids supplementation on physiological and psychological performance during an offshore sailing race. Eur J Appl.Physiol 2008;104(5):787-794. View abstract.
  • Rossi-Fanelli, F., Riggio, O., Cangiano, C., Cascino, A., De, Conciliis D., Merli, M., Stortoni, M., and Giunchi, G. Branched-chain amino acids vs lactulose in the treatment of hepatic coma: a controlled study. Dig.Dis Sci 1982;27(10):929-935. View abstract.
  • Saito, Y., Saito, H., Nakamura, M., Wakabayashi, K., Takagi, T., Ebinuma, H., and Ishii, H. Effect of the molar ratio of branched-chain to aromatic amino acids on growth and albumin mRNA expression of human liver cancer cell lines in a serum-free medium. Nutr Cancer 2001;39(1):126-131. View abstract.
  • Schena, F., Guerrini, F., Tregnaghi, P., and Kayser, B. Branched-chain amino acid supplementation during trekking at high altitude. The effects on loss of body mass, body composition, and muscle power. Eur J Appl.Physiol Occup.Physiol 1992;65(5):394-398. View abstract.
  • Sun, L. C., Shih, Y. L., Lu, C. Y., Hsieh, J. S., Chuang, J. F., Chen, F. M., Ma, C. J., and Wang, J. Y. Randomized, controlled study of branched chain amino acid-enriched total parenteral nutrition in malnourished patients with gastrointestinal cancer undergoing surgery. Am Surg. 2008;74(3):237-242. View abstract.
  • Watson, P., Shirreffs, S. M., and Maughan, R. J. The effect of acute branched-chain amino acid supplementation on prolonged exercise capacity in a warm environment. Eur J Appl.Physiol 2004;93(3):306-314. View abstract.
  • Zanetti, M., Barazzoni, R., Kiwanuka, E., and Tessari, P. Effects of branched-chain-enriched amino acids and insulin on forearm leucine kinetics. Clin Sci (Lond) 1999;97(4):437-448. View abstract.
  • Anon. Branched-chain amino acids and amyotrophic lateral sclerosis: a treatment failure? The Italian ALS Study Group. Neurology 1993;43:2466-70. View abstract.
  • Anthony JC, Anthony TG, Kimball SR, Jefferson LS. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr 2001;131:856S-60S.. View abstract.
  • Anthony JC, Lang CH, Crozier SJ, et al. Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am J Physiol Endocrinol Metab 282:E1092-101.. View abstract.
  • Aquilani R. Oral amino acid administration in patients with diabetes mellitus: supplementation or metabolic therapy? Am J Cardiol 2004;93:21A-22A.. View abstract.
  • Areces F, Salinero JJ, Abian-Vicen J, et al. A 7-day oral supplementation with branched-chain amino acids was ineffective to prevent muscle damage during a marathon. Amino Acids 2014;46(5):1169-76. View abstract.
  • Baker DH. Tolerance for branched-chain amino acids in experimental animals and humans. J Nutr 2005;135:1585S-90S. View abstract.
  • Blomstrand E, Ek S, Newsholme EA. Influence of ingesting a solution of branched-chain amino acids on plasma and muscle concentrations of amino acids during prolonged submaximal exercise. Nutrition 1996;12:485-90. View abstract.
  • Blomstrand E, Hassmen P, Ek S, et al. Influence of ingesting a solution of branched-chain amino acids on perceived exertion during exercise. Acta Physiol Scand 1997;159:41-9. View abstract.
  • Branchey L, Branchey M, Shaw S, Lieber CS. Relationship between changes in plasma amino acids and depression in alcoholic patients. Am J Psychiatry 1984;141:1212-5. View abstract.
  • Cangiano C, Laviano A, Meguid MM, et al. Effects of administration of oral branched-chain amino acids on anorexia and caloric intake in cancer patients. J Natl Cancer Inst 1996;88:550-2.
  • Chang CK, Chang Chien KM, Chang JH, et al. Branched-chain amino acids and arginine improve performance in two consecutive days of simulated handball games in male and female athletes: a randomized trial. PLoS One 2015;10(3):e0121866. View abstract.
  • Chuah SY, Ellis BJ, Mayberry JF. Exacerbation of hepatic encephalopathy by branched-chain amino acids-a case report. J Hum Nutr Diet 1992;5:53-6.
  • DiPiro JT, Talbert RL, Yee GC, et al; eds. Pharmacotherapy: A pathophysiologic approach. 4th ed. Stamford, CT: Appleton & Lange, 1999.
  • Egberts EH, Schomerus H, Hamster W, Jurgens P. Branched chain amino acids in the treatment of latent portosystemic encephalopathy. A double-blind, placebo-controlled, crossover study. Gastroenterology 1985;88:887-95. View abstract.
  • Fabbri A, Magrini N, Bianchi G, et al. Overview of randomized clinical trials of oral branched-chain amino acid treatment in chronic hepatic encephalopathy. JPEN J Parenter Enteral Nutr 1996;20:159-64. View abstract.
  • Facts and Comparisons staff. Drug Facts and Comparisons. St Louis: Wolters Kluwer Company (updated monthly).
  • Food and Drug Administration. A Catalog of FDA Approved Drug Products. Available at: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ (Accessed 28 June 2005).
  • Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). Washington, DC: National Academy Press, 2002. Available at: http://www.nap.edu/books/0309085373/html/.
  • Gietzen DW, Magrum LJ. Molecular mechanisms in the brain involved in the anorexia of branced-chain amino acid deficiency. J Nutr 2001;131:851S-5S.. View abstract.
  • Gluud LL, Dam G, Les I, et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev 2015;(9):CD001939. View abstract.
  • Gualano AB, Bozza T, Lopes De Campos P, et al. Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion. J Sports Med Phys Fitness 2011;51(1):82-8. View abstract.
  • Harris RA, Kobayashi R, Murakami T, Shimomura Y. Regulation of branched-chain alpha-keto acid dehydrogenase kinase expression in rat liver. J Nutr 2001;131:841S-5S.. View abstract.
  • Hiroshige K, Sonta T, Suda T, et al. Oral supplementation of branched-chain amino acid improves nutritional status in elderly patients on chronic haemodialysis. Nephrol Dial Transplant 2001;16:1856-62.. View abstract.
  • Hsu MC, Chien KY, Hsu CC, et al. Effects of BCAA, arginine and carbohydrate combined drink on post-exercise biochemical response and psychological condition. Chin J Physiol 2011;54(2):71-8. View abstract.
  • Hutson SM, Harris RA. Introduction. Symposium: Leucine as a nutritional signal. J Nutr 2001;131:839S-40S.
  • Hutson SM, Lieth E, LaNoue KF. Function of leucine in excitatory neurotransmitter metabolism in the central nervous system. J Nutr 2001;131:846S-50S.. View abstract.
  • Institute of Medicine. The role of protein and amino acids in sustaining and enhancing performance. Washington, DC: National Academy Press, 1999. Available at: http://books.nap.edu/books/0309063469/html/309.html#pagetop
  • Kimball SR, Farrell PA, Jefferson LS. Invited review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or excercise. J Appl Physiol 2002;93:1168-80.. View abstract.
  • Kimball SR, Jefferson LS. Control of protein synthesis by amino acid availability. Curr Opin Clin Nutr Metab Care 2002;5:63-7.. View abstract.
  • Layman DK. The role of leucine in weight loss diets and glucose homeostasis. J Nutr 2003;133:261S-7S.. View abstract.
  • Lynch CJ, Hutson SM, Patson BJ, et al. Tissue-specific effects of chronic dietary leucine and norleucine supplementation on protein synthesis in rats. Am J Physiol Endocrinol Metab 2002; 283:E824-35.. View abstract.
  • Lynch CJ. Role of leucine in the regulation of mTOR by amino acids: revelations from structure-activity studies. J Nutr 2001;131:861S-5S.. View abstract.
  • MacLean DA, Graham TE, Saltin B. Branched-chain amino acids augment ammonia metabolism while attenuating protein breakdown during exercise. Am J Physiol 1994;267:E1010-22. View abstract.
  • MacLean DA, Graham TE. Branched-chain amino acid supplementation augments plasma ammonia responses during exercise in humans. J Appl Physiol 1993;74:2711-7. View abstract.
  • Mager DR, Wykes LJ, Ball RO, Pencharz PB. Branched-chain amino acid requirements in school-aged children determined by indicator amino acid oxidation (IAAO). J Nutr 2003;133:3540-5. View abstract.
  • Majumdar SK, Shaw GK, Thomson AD, et al. Changes in plasma amino acid patterns in chronic alcoholic patients during ethanol withdrawal syndrome: their clinical implications. Med Hypotheses 1983;12:239-51. View abstract.
  • Marchesini G, Bianchi G, Rossi B, et al. Nutritional treatment with branched-chain amino acids in advanced liver cirrhosis. J Gastroenterol 2000;35:7-12. View abstract.
  • Marchesini G, Dioguardi FS, Bianchi GP, et al. Long-term oral branched-chain amino acid treatment in chronic hepatic encephalopathy. A randomized double-blind casein-controlled trial. The Italian Multicenter Study Group. J Hepatol 1990;11:92-101. View abstract.
  • Meng J, Zhong J, Zhang H, et al. Pre-, peri-, and postoperative oral administration of branched-chain amino acids for primary liver cancer patients for hepatic resection: a systematic review. Nutr Cancer 2014;66(3):517-22. View abstract.
  • Michel H, Bories P, Aubin JP, et al. Treatment of acute hepatic encephalopathy in cirrhotics with a branched-chain amino acids enriched versus a conventional amino acids mixture. A controlled study of 70 patients. Liver 1985;5:282-9. View abstract.
  • Mori N, Adachi Y, Takeshima T, et al. Branched-chain amino acid therapy for spinocerebellar degeneration: a pilot clinical crossover trial. Intern Med 1999;38:401-6. View abstract.
  • Naylor CD, O'Rourke K, Detsky AS, Baker JP. Parenteral nutrition with branched-chain amino acids in hepatic encephalopathy. A meta-analysis. Gastroenterology 1989;97:1033-42. View abstract.
  • Negro M, Giardina S, Marzani B, Marzatico F. Branched-chain amino acid supplementation does not enhance athletic performance but affects muscle recovery and the immune system. J Sports Med Phys Fitness 2008;48(3):347-51. View abstract.
  • O'Keefe SJ, Ogden J, Dicker J. Enteral and parenteral branched chain amino acid-supplemented nutritional support in patients with encephalopathy due to alcoholic liver disease. JPEN J Parenter Enteral Nutr 1987;11:447-53. View abstract.
  • Partin JF, Pushkin YR. Tachyarrhythmia and hypomania with horny goat weed. Psychosomatics 2004;45:536-7. View abstract.
  • Plaitakis A, Smith J, Mandeli J, Yahr MD. Pilot trial of branched-chain aminoacids in amyotrophic lateral sclerosis. Lancet 1988;1:1015-8. View abstract.
  • Plauth M, Egberts EH, Hamster W, et al. Long-term treatment of latent portosystemic encephalopathy with branched-chain amino acids. A double-blind placebo-controlled crossover study. J Hepatol 1993;17:308-14. View abstract.
  • Proud CG. Regulation of mammalian translation factors by nutrients. Eur J Biochem 2002;269:5338-49.. View abstract.
  • Richardson MA, Bevans ML, Read LL, et al. Efficacy of the branched-chain amino acids in the treatment of tardive dyskinesia in men. Am J Psychiatry 2003;160:1117-24.. View abstract.
  • Richardson MA, Bevans ML, Weber JB, et al. Branched chain amino acids decrease tardive dyskinesia symptoms. Psychopharmacology (Berl) 1999;143:358-64. View abstract.
  • Richardson MA, Small AM, Read LL, et al. Branched chain amino acid treatment of tardive dyskinesia in children and adolescents. J Clin Psychiatry 2004;65:92-6. View abstract.
  • Riordan SM, Williams R. Treatment of Hepatic Encephalopathy. N Engl J Med 1997;337:473-9.
  • Rosen HM, Yoshimura N, Hodgman JM, Fischer JE. Plasma amino acid patterns in hepatic encephalopathy of differing etiology. Gastroenterology 1977;72:483-7. View abstract.
  • Rossi Fanelli F, Cangiano C, Capocaccia L, et al. Use of branched chain amino acids for treating hepatic encephalopathy: clinical experiences. Gut 1986;27:111-5. View abstract.
  • Scarna A, Gijsman HJ, McTavish SF, et al. Effects of a branched-chain amino acid drink in mania. Br J Psychiatry 2003;182:210-3.. View abstract.
  • Shimomura Y, Murakami T, Nakai N, Nagasaki M, Harris RA. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J Nutr 2004;134(6 Suppl):1583S-1587S. View abstract.
  • Shimomura Y, Yamamoto Y, Bajotto G, et al. Nutraceutical effects of branched-chain amino acids on skeletal muscle. J Nutr 2006;136(2):529S-532S. View abstract.
  • Stein TP, Schluter MD, Leskiw MJ, Boden G. Attenuation of the protein wasting associated with bed rest by branched-chain amino acids. Nutrition 1999;15:656-60. View abstract.
  • Suryawan A, Hawes JW, Harris RA, et al. A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr 1998;68:72-81. View abstract.
  • Tandan R, Bromberg MB, Forshew D, et al. A controlled trial of amino acid therapy in amyotrophic lateral sclerosis: I. Clinical, functional, and maximum isometric torque data. Neurology 1996;47:1220-6. View abstract.
  • Testa D, Caraceni T, Fetoni V. Branched-chain amino acids in the treatment of amyotrophic lateral sclerosis. J Neurol 1989;236:445-7. View abstract.
  • Tsubuku S, Hatayama K, Katsumata T, et al. Thirteen-week oral toxicity study of branched-chain amino acids in rats. Int J Toxicol 2004;23(2):119-26. View abstract.
  • van Hall G, Raaymakers JS, Saris WH. Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: failure to affect performance. J Physiol (Lond) 1995;486:789-94. View abstract.
  • van Loon LJ, Kruijshoop M, Menheere PP, et al. Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Diabetes Care 2003;26:625-30. View abstract.
  • Vilstrup H, Gluud C, Hardt F, et al. Branched chain enriched amino acid versus glucose treatment of hepatic encephalopathy. A double-blind study of 65 patients with cirrhosis. J Hepatol 1990;10:291-6. View abstract.
  • Wahren J, Denis J, Desurmont P, Eriksson LS, et al. Is intravenous administration of branched chain amino acids effective in the treatment of hepatic encephalopathy? A multicenter study. Hepatol 1983;3:475-80. View abstract.
  • Askanazi, J., Furst, P., Michelsen, C. B., Elwyn, D. H., Vinnars, E., Gump, F. E., Stinchfield, F. E., and Kinney, J. M. Muscle and plasma amino acids after injury: hypocaloric glucose vs. amino acid infusion. Ann Surg. 1980;191(4):465-472. View abstract.
  • Bassit, R. A., Sawada, L. A., Bacurau, R. F., Navarro, F., and Costa Rosa, L. F. The effect of BCAA supplementation upon the immune response of triathletes. Med Sci Sports Exerc. 2000;32(7):1214-1219. View abstract.
  • Berry, H. K., Brunner, R. L., Hunt, M. M., and White, P. P. Valine, isoleucine, and leucine. A new treatment for phenylketonuria. Am J Dis Child 1990;144(5):539-543. View abstract.
  • Bigard, A. X., Lavier, P., Ullmann, L., Legrand, H., Douce, P., and Guezennec, C. Y. Branched-chain amino acid supplementation during repeated prolonged skiing exercises at altitude. Int.J Sport Nutr 1996;6(3):295-306. View abstract.
  • Blomstrand, E. and Newsholme, E. A. Effect of branched-chain amino acid supplementation on the exercise-induced change in aromatic amino acid concentration in human muscle. Acta Physiol Scand. 1992;146(3):293-298. View abstract.
  • Blomstrand, E. and Saltin, B. BCAA intake affects protein metabolism in muscle after but not during exercise in humans. Am J Physiol Endocrinol.Metab 2001;281(2):E365-E374. View abstract.
  • Blomstrand, E., Andersson, S., Hassmen, P., Ekblom, B., and Newsholme, E. A. Effect of branched-chain amino acid and carbohydrate supplementation on the exercise-induced change in plasma and muscle concentration of amino acids in human subjects. Acta Physiol Scand. 1995;153(2):87-96. View abstract.
  • Blomstrand, E., Hassmen, P., Ekblom, B., and Newsholme, E. A. Administration of branched-chain amino acids during sustained exercise--effects on performance and on plasma concentration of some amino acids. Eur J Appl.Physiol Occup.Physiol 1991;63(2):83-88. View abstract.
  • Calvey, H., Davis, M., and Williams, R. Controlled trial of nutritional supplementation, with and without branched chain amino acid enrichment, in treatment of acute alcoholic hepatitis. J Hepatol. 1985;1(2):141-151. View abstract.
  • Carli, G., Bonifazi, M., Lodi, L., Lupo, C., Martelli, G., and Viti, A. Changes in the exercise-induced hormone response to branched chain amino acid administration. Eur J Appl.Physiol Occup.Physiol 1992;64(3):272-277. View abstract.
  • Colker CM, Swain MA Fabrucini B Shi Q Kalman DS. Effects of supplemental protein on body composition and muscular strength in healthy athletic male adults. Current Therapeutic Research, Clinical & Experimental 2000;61(1):19-28.
  • Davis, J. M., Welsh, R. S., De Volve, K. L., and Alderson, N. A. Effects of branched-chain amino acids and carbohydrate on fatigue during intermittent, high-intensity running. Int.J Sports Med 1999;20(5):309-314. View abstract.
  • De Palo EF, Metus P Gatti R Previti O Bigon L De Palo CB. Branched chain amino acids chronic treatment and muscular exercise performance in athletes: a study through plasma acetyl-carnitine levels. Amino Acids 1993;4(3):255-266.
  • di, Luigi L., Guidetti, L., Pigozzi, F., Baldari, C., Casini, A., Nordio, M., and Romanelli, F. Acute amino acids supplementation enhances pituitary responsiveness in athletes. Med Sci Sports Exerc. 1999;31(12):1748-1754. View abstract.
  • Egberts, E. H., Schomerus, H., Hamster, W., and Jurgens, P. [Branched-chain amino acids in the treatment of latent porto-systemic encephalopathy. A placebo-controlled double-blind cross-over study]. Z.Ernahrungswiss. 1986;25(1):9-28. View abstract.
  • Engelen, M. P., Rutten, E. P., De Castro, C. L., Wouters, E. F., Schols, A. M., and Deutz, N. E. Supplementation of soy protein with branched-chain amino acids alters protein metabolism in healthy elderly and even more in patients with chronic obstructive pulmonary disease. Am J Clin Nutr 2007;85(2):431-439. View abstract.
  • Eriksson, L. S., Persson, A., and Wahren, J. Branched-chain amino acids in the treatment of chronic hepatic encephalopathy. Gut 1982;23(10):801-806. View abstract.
  • Evangeliou, A., Spilioti, M., Doulioglou, V., Kalaidopoulou, P., Ilias, A., Skarpalezou, A., Katsanika, I., Kalamitsou, S., Vasilaki, K., Chatziioanidis, I., Garganis, K., Pavlou, E., Varlamis, S., and Nikolaidis, N. Branched chain amino acids as adjunctive therapy to ketogenic diet in epilepsy: pilot study and hypothesis. J Child Neurol. 2009;24(10):1268-1272. View abstract.
  • Freyssenet, D., Berthon, P., Denis, C., Barthelemy, J. C., Guezennec, C. Y., and Chatard, J. C. Effect of a 6-week endurance training programme and branched-chain amino acid supplementation on histomorphometric characteristics of aged human muscle. Arch.Physiol Biochem 1996;104(2):157-162. View abstract.
  • Ganzit GP, Benzio S Filippa M Goitra B Severin B Gribaudo CG. Effects of oral branched-chain amino acids supplementation in bodybuilders. Medicina Dello Sport 1997;50(3):293-303.
  • Gil R and Neau JP. A double-blind placebo controlled study of branched chain amino acids and L-threonine for the short-term treatment of signs and symptoms of amyotrophic lateral sclerosis. La semaine des (Paris) 1992;68:1472-1475.
  • Greer, B. K., Woodard, J. L., White, J. P., Arguello, E. M., and Haymes, E. M. Branched-chain amino acid supplementation and indicators of muscle damage after endurance exercise. Int.J Sport Nutr Exerc.Metab 2007;17(6):595-607. View abstract.
  • Grungreiff K, Kleine F-D Musil HE Diete U Franke D Klauck S Page I Kleine S Lossner B Pfeiffer KP. Valine enriched branched-chain amino acids in the treatment of hepatic encephalopathy. Enzephalopathie Z.Gastroenterol. 1993;31(4):235-241.

Vitamins Survey

Have you ever purchased BRANCHED-CHAIN AMINO ACIDS?

Did you or will you purchase this product in-store or online?

Where did you or where do you plan to purchase this product?

Where did you or where do you plan to purchase this product?

What factors influenced or will influence your purchase? (check all that apply)

Vitamins Survey

Where did you or where do you plan to purchase this product?

Do you buy vitamins online or instore?

What factors are most important to you? (check all that apply)

More Resources for BRANCHED-CHAIN AMINO ACIDS

CONDITIONS OF USE AND IMPORTANT INFORMATION: This information is meant to supplement, not replace advice from your doctor or healthcare provider and is not meant to cover all possible uses, precautions, interactions or adverse effects. This information may not fit your specific health circumstances. Never delay or disregard seeking professional medical advice from your doctor or other qualified health care provider because of something you have read on WebMD. You should always speak with your doctor or health care professional before you start, stop, or change any prescribed part of your health care plan or treatment and to determine what course of therapy is right for you.

This copyrighted material is provided by Natural Medicines Comprehensive Database Consumer Version. Information from this source is evidence-based and objective, and without commercial influence. For professional medical information on natural medicines, see Natural Medicines Comprehensive Database Professional Version.
© Therapeutic Research Faculty 2018.